Lecturer(s)
|
-
Ženčák Pavel, RNDr. Ph.D.
-
Bebčáková Iveta, Mgr. Ph.D.
|
Course content
|
1. Fundamentals of integral calculus: Indefinite integral, the Riemann integral, application in determination of curve length, area, surface and volume of a solid of revolution. 2. Functions of two variables: Partial derivative, local extremes, differential. 3. Introduction to differential equations: First order ordinary differential equations. 4. Fundamentals of numerical mathematics: Numerical solving of equations with one unknown variable - iterative method. Interpolation, least squares approximation method, differences, numerical differentiation and integration.
|
Learning activities and teaching methods
|
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
- Attendace
- 52 hours per semester
- Homework for Teaching
- 20 hours per semester
- Preparation for the Course Credit
- 40 hours per semester
- Preparation for the Exam
- 65 hours per semester
|
Learning outcomes
|
Understand the principles ofintegral calculus and theory of differential equations.
Comprehension Understand basic principles ofintegral calculus and theory of differential equations.
|
Prerequisites
|
Differential calculus of functions of one variable.
|
Assessment methods and criteria
|
Oral exam, Written exam
Credit: Passing written tests (i.e. obtaining at least half of the possible points in each test). Exam: Oral exam.
|
Recommended literature
|
-
B. Budinský, J. Charvát. (1990). Matematika I. SNTL, Praha.
-
Bartch H. J. (1983). Matematické vzorce. SNTL, Praha.
-
J. Kopáček. (2002). Matematická analýza pro fyziky. Matfyzpress.
-
Klůfa, J., Sýkorová, I. (2023). Učebnice matematiky (2) pro studenty VŠE. Jesenice: Ekopress.
-
Kolda S., Krajňáková D., Kimla A. (1990). Matematika pro chemiky II. SNTL Praha.
-
Kolda S., Krajňáková D., Kimla A. (1989). Matematika pro chemiky I. SNTL Praha.
-
R. A. Adams. (1991). Calculus: A Complete Course. Addision-Wesley Publishers Limited.
-
Tebbut P. (1995). Basic Mathematics for Chemists. Chichester.
-
V. Kotvalt. (2003). Základy matematiky pro biologické obory. Karolinum, Praha.
|