Course: Differential Equations

« Back
Course title Differential Equations
Course code KMA/DR
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study 1
Semester Winter
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory, Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Tomeček Jan, doc. RNDr. Ph.D.
  • Vodák Rostislav, doc. RNDr. Ph.D.
  • Ženčák Pavel, RNDr. Ph.D.
  • Krajščáková Věra, Mgr.
Course content
1. Motivation, examples from physics, engineering, biology, chemistry, ecology, economics, etc. 2. Existence, uniqueness, stability, regularity of solutions of differential equations and numerical methods. 3. Solution of ODE, Cauchy problem, geometrical interpretation plus numerical methods. 4. Linear equations and systems, global properties. 5. Nonlinear equations: existence, uniqueness, stability, separable differential equations. 6. Boundary value problems, resonance, Green functions, basic numerical methods for BVPs, implementation, visualisation. 7. Alternative methods for solving ODEs.

Learning activities and teaching methods
Lecture, Monologic Lecture(Interpretation, Training)
Learning outcomes
To obtain basics of the theory of ordinary differential equations.
Comprehension Understand basic notions concerning ODEs.
Prerequisites
Differential and integral calculus.
KMA/MA1 and KAG/LA1A

Assessment methods and criteria
Oral exam, Seminar Work

Oral exam. Credits: active participation, seminal work and its defence.
Recommended literature
  • Online přednáška.
  • Online přednáška.
  • Kalas, J., Ráb, M. (2012). Obyčejné diferenciální rovnice. Vyd. 3.. Brno: Masarykova univerzita.
  • Kojecká, J., Závodný, M. (2004). Příklady z diferenciálních rovnic. Univerzita Palackého, Olomouc.
  • M. Greguš, M. Švec, V. Šeda. (1985). Obyčajné diferenciálne rovnice. Alfa, SNTL.
  • Ráb, M. (1998). Metody řešení obyčejných diferenciálních rovnic. MU Brno.
  • Tenenbaum M., Pollard, H. (1985). Ordinary Differential Equations. Dover Publications.
  • Trench, W. F. (2008). Elementary Differential Equations and Boundary Value Problems. Wiley.
  • Wirkus, Stephen A., Swift. Randall J. (2015). A course in ordinary differential equations. Boca Raton, Fla. : CRC Press.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Industrial Mathematics (2020) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Business Mathematics (2021) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics (2023) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Mathematics (2020) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Data Science (2020) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter