Course: Mathematical Analysis 1

« Back
Course title Mathematical Analysis 1
Course code KMA/MA1
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 7
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Pavlů Ivana, Mgr. Ph.D.
  • Škorňa Stanislav, Mgr.
  • Tomeček Jan, doc. RNDr. Ph.D.
  • Fürst Tomáš, RNDr. Ph.D.
  • Ludvík Pavel, RNDr. Ph.D.
  • Burkotová Jana, Mgr. Ph.D.
  • Bebčáková Iveta, Mgr. Ph.D.
  • Machalová Monika, Ing.
Course content
1. Logic, sets, number sets. 2. Sequences and limits. 3. Real functions of a real variable: elementary functions, properties, limit, continuity. 4. Derivative: motivation, properties, computational methods, mean value theorems. Applications of calculus: approximation, investigation of functions, extremal problems. 5. Primitive functions: properties, basic computational methods. 6. Riemann integral: construction, properties, computational methods. Applications of integral: computation of lenghts, areas, volumes; physical applications.

Learning activities and teaching methods
Lecture, Monologic Lecture(Interpretation, Training), Work with Text (with Book, Textbook)
Learning outcomes
To understand the fundamentals of diferential and integral calculus of functions of a single variable.
Comprehension Understand the mathematical tools of diferential and integral calculus of functions of a single variable.
Prerequisites
Grammar school mathematics.

Assessment methods and criteria
Oral exam, Written exam

Credits: active participation, succesfull written tests. Exam: written and oral.
Recommended literature
  • Online přednáška.
  • Online přednáška.
  • Dunn, Corey M. (2017). Introduction to analysis. Boca Raton: CRC Press.
  • Kojecká J., Kojecký T. (2001). Matematická analýza I. Skriptum UP Olomouc.
  • Kojecká, J., Kojecký, T. (1997). Matematická analýza pro 1. semestr. VUP, Olomouc.
  • Kojecká, J. (1991). Řešené příklady z matematické analýzy. Rektorát Univerzity Palackého, Olomouc.
  • Kojecká J., Závodný M. (2003). Příklady z MA I. Skriptum UP Olomouc.
  • Kopáček, J. (2016). Matematická analýza nejen pro fyziky (I). Matfyzpress, Praha.
  • Kopáček, J. (2005). Příklady z matematiky nejen pro fyziky. Matfyzpress, Praha.
  • Rudin, W. (1964). Principles of Mathematical Analysis. McGraw-Hill.
  • Spivak, M. (2008). Calculus. Publish or Perish, Houston.
  • Veselý, J. (2001). Matematická analýza pro učitele. Matfyzpress, Praha.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Data Science (2020) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Mathematics (2020) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Business Mathematics (2021) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Industrial Mathematics (2020) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Winter