Lecturer(s)
|
-
Závodný Miloslav, RNDr.
-
Zacpal Jiří, Mgr. Ph.D.
-
Krupka Michal, doc. RNDr. Ph.D.
-
Kolařík Miroslav, doc. RNDr. Ph.D.
-
Masopust Tomáš, doc. RNDr. Ph.D., DSc.
|
Course content
|
1. Primitive functions and integration methods for the functions of one variable. 2. Riemann's particular integral and its use. 3. Improper integrals. 4. Metric spaces. 5. Differential calculus of functions of multiple variables. 6. Introduction to the integral calculus of multi-variable functions. 7. Introduction to differential equations.
|
Learning activities and teaching methods
|
Lecture, Demonstration
|
Learning outcomes
|
The students become familiar with advanced concepts of mathematical analysis.
Comprehension Understand the mathematical tools of integral calculus of functions of a single variables, diferential calculus of functions of many variables, and number series.
|
Prerequisites
|
KMI/MATA1 Mathematical Analysis 1
KMI/MATA1
|
Assessment methods and criteria
|
Oral exam, Written exam
Active participation in class. Completion of assigned homeworks. Passing the oral (or written) exam.
|
Recommended literature
|
-
Došlá Z., Plch R., Sojka P. (1999). Diferenciální počet funkcí více proměnných s programem MAPLE V.. MU Brno.
-
J. Kojecká, M. Závodný. (2003). Příklady z MA II. Skriptum UP Olomouc.
-
Neill H. (2018). Calculus: A Complete Introduction: The Easy Way to Learn Calculus (Teach Yourself). Hodder & Stoughton General Division.
-
Rektorys K. (2001). Co je a k čemu je vyšší matematika. Academia Praha.
-
Spivak M. (1996). Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Perseus Press.
-
V. Novák. (2004). Integrální počet v R. Brno, skriptum MU.
|