Course: Mathematical Analysis 2

« Back
Course title Mathematical Analysis 2
Course code KMI/MATA2
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Závodný Miloslav, RNDr.
  • Zacpal Jiří, Mgr. Ph.D.
  • Krupka Michal, doc. RNDr. Ph.D.
  • Kolařík Miroslav, doc. RNDr. Ph.D.
  • Masopust Tomáš, doc. RNDr. Ph.D., DSc.
Course content
1. Primitive functions and integration methods for the functions of one variable. 2. Riemann's particular integral and its use. 3. Improper integrals. 4. Metric spaces. 5. Differential calculus of functions of multiple variables. 6. Introduction to the integral calculus of multi-variable functions. 7. Introduction to differential equations.

Learning activities and teaching methods
Lecture, Demonstration
Learning outcomes
The students become familiar with advanced concepts of mathematical analysis.
Comprehension Understand the mathematical tools of integral calculus of functions of a single variables, diferential calculus of functions of many variables, and number series.
Prerequisites
KMI/MATA1 Mathematical Analysis 1
KMI/MATA1

Assessment methods and criteria
Oral exam, Written exam

Active participation in class. Completion of assigned homeworks. Passing the oral (or written) exam.
Recommended literature
  • Došlá Z., Plch R., Sojka P. (1999). Diferenciální počet funkcí více proměnných s programem MAPLE V.. MU Brno.
  • J. Kojecká, M. Závodný. (2003). Příklady z MA II. Skriptum UP Olomouc.
  • Neill H. (2018). Calculus: A Complete Introduction: The Easy Way to Learn Calculus (Teach Yourself). Hodder & Stoughton General Division.
  • Rektorys K. (2001). Co je a k čemu je vyšší matematika. Academia Praha.
  • Spivak M. (1996). Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Perseus Press.
  • V. Novák. (2004). Integrální počet v R. Brno, skriptum MU.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester