Course: Mathematical Analysis 1

« Back
Course title Mathematical Analysis 1
Course code KMI/MATA1
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Krupka Michal, doc. RNDr. Ph.D.
  • Kolařík Miroslav, doc. RNDr. Ph.D.
  • Kolařík Jan, Mgr.
Course content
1. Number line, supremum and infimum. 2. Numerical sequences. 3. The concept of function. Elementary functions. 4. Limit of function. Continuity of function. 5. Derivative of a function. 6. Basic sentences of differential calculus. 7. Use of differential calculus. Taylor's polynomial. 8. Numerical series.

Learning activities and teaching methods
Lecture, Demonstration
Learning outcomes
The students become familiar with basic concepts of mathematical analysis.
Comprehension Comprehension of basic notions of differential calculus, master applications of the methods.
Prerequisites
unspecified

Assessment methods and criteria
Oral exam, Written exam

Active participation in class. Completion of assigned homeworks. Passing the oral (or written) exam.
Recommended literature
  • Došlá Z, Novák V. (2007). Nekonečné řady. Brno.
  • Jarník V. Diferenciální počet I.
  • Kojecká J., Kojecký T. (2001). Matematická analýza I. Skriptum UP Olomouc.
  • Kojecká J., Závodný M. (2003). Příklady z MA I. Skriptum UP Olomouc.
  • Neill H. (2018). Calculus: A Complete Introduction: The Easy Way to Learn Calculus (Teach Yourself). Hodder & Stoughton General Division.
  • Spivak, M. (2008). Calculus. Houston, Tex: Publish or Perish.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester