Lecturer(s)
|
-
Krupka Michal, doc. RNDr. Ph.D.
-
Kolařík Miroslav, doc. RNDr. Ph.D.
-
Kolařík Jan, Mgr.
|
Course content
|
1. Number line, supremum and infimum. 2. Numerical sequences. 3. The concept of function. Elementary functions. 4. Limit of function. Continuity of function. 5. Derivative of a function. 6. Basic sentences of differential calculus. 7. Use of differential calculus. Taylor's polynomial. 8. Numerical series.
|
Learning activities and teaching methods
|
Lecture, Demonstration
|
Learning outcomes
|
The students become familiar with basic concepts of mathematical analysis.
Comprehension Comprehension of basic notions of differential calculus, master applications of the methods.
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Oral exam, Written exam
Active participation in class. Completion of assigned homeworks. Passing the oral (or written) exam.
|
Recommended literature
|
-
Došlá Z, Novák V. (2007). Nekonečné řady. Brno.
-
Jarník V. Diferenciální počet I.
-
Kojecká J., Kojecký T. (2001). Matematická analýza I. Skriptum UP Olomouc.
-
Kojecká J., Závodný M. (2003). Příklady z MA I. Skriptum UP Olomouc.
-
Neill H. (2018). Calculus: A Complete Introduction: The Easy Way to Learn Calculus (Teach Yourself). Hodder & Stoughton General Division.
-
Spivak, M. (2008). Calculus. Houston, Tex: Publish or Perish.
|