Course: Mathematical Analysis 2

« Back
Course title Mathematical Analysis 2
Course code KMI/MA2
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Foltasová Eliška, Mgr.
  • Zacpal Jiří, Mgr. Ph.D.
  • Kolařík Miroslav, doc. RNDr. Ph.D.
  • Masopust Tomáš, doc. RNDr. Ph.D., DSc.
Course content
1. Primitive functions and integration methods for the functions of one variable. 2. Riemann's particular integral and its use. 3. Improper integrals. 4. Introduction to differential equations. 5. Metric spaces. 6. Differential calculus of functions of multiple variables. 7. Introduction to the integral calculus of multi-variable functions.

Learning activities and teaching methods
Lecture, Demonstration
Learning outcomes
The students become familiar with advanced concepts of mathematical analysis.
Comprehension Understand integral calculus of functions of one variable, metric spaces, differential equations, and differential and integral calculus of multi-variable functions.
Prerequisites
KMI/MA1 Mathematical Analysis 1

Assessment methods and criteria
Oral exam, Written exam

Active participation in class. Completion of assigned homeworks. Passing the oral (or written) exam.
Recommended literature
  • Došlá Z., Plch R., Sojka P. (1999). Diferenciální počet funkcí více proměnných s programem MAPLE V.. MU Brno.
  • J. Kojecká, M. Závodný. (2003). Příklady z MA II. Skriptum UP Olomouc.
  • Neill H. (2018). Calculus: A Complete Introduction: The Easy Way to Learn Calculus (Teach Yourself). Hodder & Stoughton General Division.
  • Rektorys K. (2001). Co je a k čemu je vyšší matematika. Academia Praha.
  • Spivak M. (1996). Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Perseus Press.
  • V. Novák. (2004). Integrální počet v R. Brno, skriptum MU.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Bioinformatics (2021) Category: Informatics courses 2 Recommended year of study:2, Recommended semester: Summer
Faculty: Faculty of Science Study plan (Version): Computer Science (2020) Category: Informatics courses 2 Recommended year of study:2, Recommended semester: Summer
Faculty: Faculty of Science Study plan (Version): Computer Science - Specialization in General Computer Science (2021) Category: Informatics courses 2 Recommended year of study:2, Recommended semester: Summer