Course: Basic Numerical Methods

« Back
Course title Basic Numerical Methods
Course code KMA/ZNUM
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory, Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Machalová Jitka, doc. RNDr. Ph.D., MBA
  • Burkotová Jana, Mgr. Ph.D.
  • Radová Jana, Mgr.
Course content
1. Introduction, error analysis. 2. Polynomial interpolation. Least squares approximation over discrete sets of points. 3. Numerical differentiation - formulae and error estimation. Numerical integration - basic rules and notions, Newton Cotes quadrature formulae and their using. 4. Methods for solving nonlinear equations. Iterative methods and their convergence. Iterative methods for solving systems of nonlinear equations. Roots of polynomials and their computations. 5. Systems of linear equations - direct methods. Basic iterative methods. Methods for determining eigenvalues and eigenvectors. Triangular factorization of matrices. Singular value decomposition.

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
Learning outcomes
The course introduces basic numerical methods of analysis and algebra.
Comprehension Understand the numerical methods of mathematical analysis and linear algebra.
Prerequisites
Basic knowledge of mathematical analysis and linear algebra.
KMA/MA1 and KAG/LA1A

Assessment methods and criteria
Oral exam, Seminar Work

Credit: active participation, the student has to pass written tests, seminary work Exam: the student has to understand the subject and be able to prove the principal results
Recommended literature
  • Čermák L., Hlavička R. (2016). Numerické metody. Brno: Akademické nakladatelství CERM, s.r.o.
  • Eldén L. (2004). Introduction to Numerical Computation. Studentliteratur.
  • Horová I., Zelinka J. (2004). Numerické metody. 2. rozš. vyd.. Brno: Masarykova univerzita.
  • Linfield G., Penny J. (1995). Numerical Methods Using Matlab. Horwod.
  • Přikryl P. (1995). Numerické metody: aproximace funkcí a matematická analýza. Plzeň: Západočeská univerzita. Fakulta aplikovaných věd.
  • S. Míka. (1995). Numerické metody. Skripta ZČU Plzeň.
  • Segethová J. (1998). Základy numerické matematiky. Karolinum Praha.
  • Stoer J., Bulirsch R. (2002). Introduction to numerical analysis. 3rd ed.. New York: Springer.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Industrial Mathematics (2020) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Business Mathematics (2021) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Mathematics (2020) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Data Science (2020) Category: Mathematics courses 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Biophysics - Specialization in Molecular Biophysics (2024) Category: Physics courses 3 Recommended year of study:3, Recommended semester: Winter