Lecturer(s)
|
-
Machalová Jitka, doc. RNDr. Ph.D., MBA
-
Burkotová Jana, Mgr. Ph.D.
-
Radová Jana, Mgr.
|
Course content
|
1. Introduction, error analysis. 2. Polynomial interpolation. Least squares approximation over discrete sets of points. 3. Numerical differentiation - formulae and error estimation. Numerical integration - basic rules and notions, Newton Cotes quadrature formulae and their using. 4. Methods for solving nonlinear equations. Iterative methods and their convergence. Iterative methods for solving systems of nonlinear equations. Roots of polynomials and their computations. 5. Systems of linear equations - direct methods. Basic iterative methods. Methods for determining eigenvalues and eigenvectors. Triangular factorization of matrices. Singular value decomposition.
|
Learning activities and teaching methods
|
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
|
Learning outcomes
|
The course introduces basic numerical methods of analysis and algebra.
Comprehension Understand the numerical methods of mathematical analysis and linear algebra.
|
Prerequisites
|
Basic knowledge of mathematical analysis and linear algebra.
KMA/MA1 and KAG/LA1A
|
Assessment methods and criteria
|
Oral exam, Seminar Work
Credit: active participation, the student has to pass written tests, seminary work Exam: the student has to understand the subject and be able to prove the principal results
|
Recommended literature
|
-
Čermák L., Hlavička R. (2016). Numerické metody. Brno: Akademické nakladatelství CERM, s.r.o.
-
Eldén L. (2004). Introduction to Numerical Computation. Studentliteratur.
-
Horová I., Zelinka J. (2004). Numerické metody. 2. rozš. vyd.. Brno: Masarykova univerzita.
-
Linfield G., Penny J. (1995). Numerical Methods Using Matlab. Horwod.
-
Přikryl P. (1995). Numerické metody: aproximace funkcí a matematická analýza. Plzeň: Západočeská univerzita. Fakulta aplikovaných věd.
-
S. Míka. (1995). Numerické metody. Skripta ZČU Plzeň.
-
Segethová J. (1998). Základy numerické matematiky. Karolinum Praha.
-
Stoer J., Bulirsch R. (2002). Introduction to numerical analysis. 3rd ed.. New York: Springer.
|