Course: Modelling of Risk and Uncertainty

« Back
Course title Modelling of Risk and Uncertainty
Course code KMA/MRN
Organizational form of instruction Lecture + Exercise
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Pavlačka Ondřej, RNDr. Ph.D.
  • Bebčáková Iveta, Mgr. Ph.D.
Course content
1. Risk and uncertainty. 2. Risk-management. 3. Main tools for modelling of risk - Monte Carlo simulation, scenarios, probabilistic trees. 4. Monte Carlo simulation - mathematical background, building a model, risk measuring 5. Fuzzy sets. 6. Operation with fuzzy sets. 7. Fuzzy numbers. Extension principle. Defuzzification. 8. Linguistic modelling. 9. Fuzzy inference system - Mamdani and Takagi-Sugeno approach. Fuzzy regulation.

Learning activities and teaching methods
Lecture, Demonstration
Learning outcomes
Meet the mathematical tools for modelling risk and uncertainty - Monte Carlo simulation, fuzzy sets theory.
Capability to appropriately model and measure risk and model uncertainty.
Prerequisites
calculus, probability theory, statistics

Assessment methods and criteria
Student performance, Seminar Work

Solving the given problems (Monte Carlo simulation, building fuzzy inference system). Active participation.
Recommended literature
  • Artzner, P., Delbaen, F., Eber, J.-M., Heath, D. (1999). Coherent measures of risk. Mathematical Finance 9.
  • D. Dubois, H. Prade (Eds). (2000). Fundamentals of fuzzy sets. Kluwer Academic Publishers, Boston, London, Dordrecht.
  • D. W. Hubbard. (2020). The Failure of Risk Management: Why It's Broken and How to Fix It (2nd Ed.). Wiley.
  • G. J. Klir, B. Yuan. (1996). Fuzzy sets and Fuzzy logic: Theory and Applications. Prentice Hall, New Jersey.
  • Hnilica, J., Fotr, J. (2014). Aplikovaná analýza rizika ve finančním managementu a investičním rozhodování. (2. vydání). Grada Publishing.
  • J. Talašová. (2003). Fuzzy metody vícekriteriálního hodnocení a rozhodování. VUP, Olomouc.
  • R. Bělohlávek, J.W. Dauben, G.J. Klir. (2017). Fuzzy Logic and Mathematics: A Historical Perspective. Oxford University Press.
  • V. Novák. (1990). Fuzzy množiny a jejich aplikace. SNTL, Praha.
  • Vose, D. (2008). Risk Analysis: a Quantitative Guide (3rd Ed.). New York.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Mathematics (2023) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Winter