Lecturer(s)
|
-
Fürst Tomáš, RNDr. Ph.D.
-
Tomeček Jan, doc. RNDr. Ph.D.
-
Ludvík Pavel, RNDr. Ph.D.
-
Radová Jana, Mgr.
|
Course content
|
1. Lebesgue measure and integral. 2. Limits, sums and differentiation after the integral sign. 3. Fubini's Theorem and integration by substitution. 4. Curve integrals and potential. 5. Surface integrals. 6. Gauss-Ostrogradsky's, Green's and Stokes' Theorems. 7. Introduction to the calculus of variation
|
Learning activities and teaching methods
|
Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
|
Learning outcomes
|
Understand integral calculus of functions of several variables
Comprehension Understand integral calculus of functions of several variables.
|
Prerequisites
|
Differential calculus of functions of several variables, integration on the real axis.
KMA/MA2
|
Assessment methods and criteria
|
Oral exam, Written exam
Credit: active participation, the student has to pass two written tests (i.e. to obtain at least half of the possible points in each test). Exam: Understand the subject and be able to prove the most important results
|
Recommended literature
|
-
Kopáček, J. (2007). Matematická analýza nejen pro fyziky (III). Matfyzpress, Praha.
-
Kopáček, J. (2015). Matematická analýza nejen pro fyziky (II). Matfyzpress, Praha.
-
Kopáček, J. (2006). Příklady z matematiky nejen pro fyziky III. Matfyzpress, Praha.
-
R. Feynman. (2005). The Feynman Lectures on Physics. Addison Wesley.
-
Stewart, J. (2015). Multivariable Calculus. Brooks Cole.
|