Course: Mathematical Analysis 2

« Back
Course title Mathematical Analysis 2
Course code KMA/MA2
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 7
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Tomeček Jan, doc. RNDr. Ph.D.
  • Fürst Tomáš, RNDr. Ph.D.
  • Burkotová Jana, Mgr. Ph.D.
  • Ludvík Pavel, RNDr. Ph.D.
  • Bebčáková Iveta, Mgr. Ph.D.
Course content
1. Euclid space, scalar product, euclid metric and norm, topology, convergence, norm equivalence in Rn. 2. Functions of several real variables: limit and continuity, directional and partial derivatives, differential and relations among them. 3. Vector functions: directional and partial derivatives, differential, potential, divergence, rotation, physical interpretation and applications. 4. Extremal values of functions of several variables: local and global extrema, conditional extrema. 5. Series: convergence criteria for series with nonnegative and general values, absolute and relative convergence. 6. Sequences and series of functions, uniform convergence. 7. Taylor series. 8. Fourier series and their applications, introduction to complex analysis.

Learning activities and teaching methods
Lecture, Monologic Lecture(Interpretation, Training), Work with Text (with Book, Textbook)
Learning outcomes
To understand the basics of differential calculus of functions of more variables.
Comprehension Understand the mathematical tools of diferential calculus of functions of a single variable, theory of number and functional series (Taylor and Fourier series).
Prerequisites
Differential and integral calculus of functions of one real variable.
KMA/MA1

Assessment methods and criteria
Oral exam, Written exam

Credits: active attendance, passing written tests Exam: written and oral
Recommended literature
  • Online přednáška.
  • Online přednáška.
  • Došlá, Z., Novák, V. (2007). Nekonečné řady. MU PřF, Brno.
  • Kopáček, J. (2007). Matematická analýza nejen pro fyziky (III). Matfyzpress, Praha.
  • Kopáček, J. (2015). Matematická analýza nejen pro fyziky (II). Matfyzpress, Praha.
  • Kopáček, J. (2006). Příklady z matematiky nejen pro fyziky III. Matfyzpress, Praha.
  • Kopáček, J. (2006). Příklady z matematiky nejen pro fyziky II. Matfyzpress, Praha.
  • Rachůnek, L., Rachůnková, I. (2004). Diferenciální počet funkcí více proměnných. UP Olomouc.
  • Rachůnková, I., Kojecká, J. (1998). Řešené příklady z matematické analýzy III. Univerzita Palackého v Olomouci, Olomouc.
  • Veselý, J. (2001). Matematická analýza pro učitele II. Matfyzpress, Praha.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Business Mathematics (2021) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Summer
Faculty: Faculty of Science Study plan (Version): Mathematics (2020) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Summer
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Industrial Mathematics (2020) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Summer
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Data Science (2020) Category: Mathematics courses 1 Recommended year of study:1, Recommended semester: Summer