Lecturer(s)
|
-
Krajščáková Věra, Mgr.
-
Tomeček Jan, doc. RNDr. Ph.D.
-
Rachůnková Irena, prof. RNDr. DrSc.
|
Course content
|
1. Modelling using dynamical systems. 2. Linear systems, classification. 3. Nonlinear systesm, local theory. Stability. 4. Gradient and hamiltonian systems. 5. 2D models: Bifurcations and limit cycles (Poincaré-Bendixson theory), Lotka-Volterra model, pendulum, oscilators. 6. 3D models: chaos and strange attractors (Rosler, Lorenz).
|
Learning activities and teaching methods
|
Lecture
|
Learning outcomes
|
Understand basic notions concerning dynamical systems.
Comprehension Understand basic notions concerning dynamical systems.
|
Prerequisites
|
Differential and integral calculus.
KMA/MA1 and KAG/LA1A
|
Assessment methods and criteria
|
Oral exam, Seminar Work
Oral exam. Credits: defense of the seminal work
|
Recommended literature
|
-
Online přednáška.
-
F. Verhulst. (1990). Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, Berlin.
-
J. Hale, H. Kocak. (1991). Dynamics and Bifurcation. Springer-Verlag, New York.
-
Katok, A.; Hasselblatt, B. (1995). Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge.
-
Rachůnková, J. Fišer. (2014). Dynamické systémy 1. UP v Olomouci, Olomouc.
-
S. Strogatz. (2014). Nonlinear Dynamics and Chaos, With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). Avalon Publishing.
|