Lecturer(s)
|
-
Vítková Lenka, Mgr. Ph.D.
-
Kolařík Miroslav, doc. RNDr. Ph.D.
-
Foltasová Eliška, Mgr.
|
Course content
|
1. Number line, supremum and infimum. Classification of points with respect to the set. 2. Numerical sequences. Sequence limits. 3. The concept of function. Elementary functions and their properties. 4. Limit of function. Continuity of function. 5. Derivation of the function. Differential function. 6. Basic theorems of differential calculus. 7. Use of differential calculus. Taylor's polynomial. 8. Number series, convergence criteria. Power series.
|
Learning activities and teaching methods
|
Lecture, Demonstration
|
Learning outcomes
|
The students become familiar with basic concepts of mathematical analysis.
Comprehension Comprehension of basic notions of differential calculus, master applications of the methods.
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Oral exam, Written exam
Active participation in class. Completion of assigned homeworks. Passing the oral (or written) exam.
|
Recommended literature
|
-
Došlá Z, Novák V. (2007). Nekonečné řady. Brno.
-
Jarník V. Diferenciální počet I.
-
Kojecká J., Kojecký T. (2001). Matematická analýza I. Skriptum UP Olomouc.
-
Kojecká J., Závodný M. (2003). Příklady z MA I. Skriptum UP Olomouc.
-
Neill H. (2018). Calculus: A Complete Introduction: The Easy Way to Learn Calculus (Teach Yourself). Hodder & Stoughton General Division.
-
Spivak, M. (2008). Calculus. Houston, Tex: Publish or Perish.
|