Lecturer(s)
|
-
Arkhipov Ievgen, Mgr. Ph.D.
-
Kvita Jiří, Mgr. Ph.D.
|
Course content
|
1. Historical introduction, quantum hypothesis a. Planck law, black body radiation spectrum, atomic spectra b. photoeffect, Compton scattering c. de Broglie's hypothesis 2. Postulates of quantum mechanics a. Quantum state, principle of superposition, observables b. Probabilistic character of measurement c. Predictions, expectation values 3. Schroedinger equation a. probability density, wave function interpretation, normalization b. Free particle, plane waves 4. The uncertainty principle a. non-compatible observables, commutator, dependence of measured values on the order of measurements. 5. Simple quantum systems and their spectra a. infinite and finite square well and a barrier b. scattering and tunelling c. harmonic oscillator, ladder operators. 6. Angular momentum and spin a. quantization, commutation relations b. spin of an electron, Stern-Gerlach experiment 7. Hydrogen atom a. quantum numbers, stationary states, spectrum.
|
Learning activities and teaching methods
|
Lecture, Monologic Lecture(Interpretation, Training)
- Attendace
- 26 hours per semester
- Homework for Teaching
- 17 hours per semester
- Preparation for the Course Credit
- 17 hours per semester
|
Learning outcomes
|
To explain fundamentals of quantum mechanics.
Knowledge Understanding of fundamental principles of quantum mechanics.
|
Prerequisites
|
Knowledge in the scope of course topics (examination).
|
Assessment methods and criteria
|
Student performance
Knowledge within the scope of the course topics.
|
Recommended literature
|
-
Feynman, R. P., Leighton, R. B., Sands M. (2010). The Feynman Lectures on Physics, Vol. 3. Basic Books, New York.
-
Griffiths, D. J. (1994). Introduction to Quantum Mechanics. Pearson Prentice Hall, New Jersey.
-
Klíma, J.; Velický, B. (1992). Kvantová mechanika I.. MFF UK Praha.
-
Sakurai, J. J. (1994). Modern Quantum Mechanics. Addison-Wesley, New York.
-
Skála L. (2005). Úvod do kvantové mechaniky. Akademia, Praha.
|