Předmět: Proseminář z matematiky pro fyziky 1

« Zpět
Název předmětu Proseminář z matematiky pro fyziky 1
Kód předmětu SLO/PMF1
Organizační forma výuky Seminář
Úroveň předmětu Bakalářský
Rok studia nespecifikován
Semestr Zimní
Počet ECTS kreditů 2
Vyučovací jazyk Čeština
Statut předmětu Povinný
Způsob výuky Kontaktní
Studijní praxe Nejedná se o pracovní stáž
Doporučené volitelné součásti programu Není
Vyučující
  • Horváth Pavel, RNDr. Ph.D.
  • Havelková Martina, Mgr.
Obsah předmětu
1. Matematická logika, matematický jazyk. 2. Množiny, funkce. 3. Reálná čísla. 4. Komplexní čísla. 5. Kombinatorika, základy statistiky. 6. Posloupnosti a jejich limity, řady. 7. Funkce jedné reálné proměnné: základní pojmy a vlastnosti. 8. Elementární funkce: Mocninná, logaritmická, exponenciální, goniometrické a cyklometrické. 9. Limita a spojitost funkce. 10. Základy diferenciálního počtu funkce jedné reálné proměnné: Derivace a její geometrický a fyzikální význam, diferenciál, užití při vyšetřování průběhu funkce. 11. Využití software MATHEMATICA pro vybraná témata - praktické cvičení.

Studijní aktivity a metody výuky
Monologická (výklad, přednáška, instruktáž), Dialogická (diskuze, rozhovor, brainstorming)
  • Účast na výuce - 26 hodin za semestr
  • Příprava na zápočet - 4 hodiny za semestr
Výstupy z učení
Osvojit si základní znalosti matematické analýzy se zaměřením na aplikace pro fyziku.
Předmět zaměřený na získání znalostí. Připomenout základní matematické pojmy, objasnit základy diferenciálního počtu funkce jedné proměnné, aplikovat získané znalosti na řešení úloh matematické analýzy pro fyziky.
Předpoklady
Předpokládají se znalosti středoškolské matematiky.

Hodnoticí metody a kritéria
Analýza výkonů studenta

Kolokvium: účast na prosemináři, úspěšné složení písemného testu.
Doporučená literatura
  • BARTCH H.J. (1996). Matematické vzorce. MF, Praha.
  • BRABEC J., MARTAN F., ROZENSKÝ Z. (1989). Matematická analýza 1. SNTL, Praha.
  • KOPÁČEK J. (2004). Matematická analýza nejen pro fyziky (I). Matfyzpress, Praha.
  • KOPÁČEK J. (2005). Příklady z matematiky nejen pro fyziky (I). Matfyzpress, Praha.
  • KVASNICA J. (2004). Matematický aparát fyziky. Academia, Praha.
  • POLÁK J. (1995). Přehled středoškolské matematiky. Prometheus, Praha.
  • REKTORYS K. (1995). Přehled užité matematiky I a II. Prometheus, Praha.
  • RUSKEEPÄÄ H. (2009). Mathematica navigator - Mathematics, Statistics, and Graphics. Academic Press, London.


Studijní plány, ve kterých se předmět nachází
Fakulta Studijní plán (Verze) Kategorie studijního oboru/specializace Doporučený ročník Doporučený semestr
Fakulta: Přírodovědecká fakulta Studijní plán (Verze): Aplikovaná fyzika (2019) Kategorie: Fyzikální obory 1 Doporučený ročník:1, Doporučený semestr: Zimní
Fakulta: Přírodovědecká fakulta Studijní plán (Verze): Přístrojová a počítačová fyzika (2019) Kategorie: Fyzikální obory 1 Doporučený ročník:1, Doporučený semestr: Zimní