Lecturer(s)
|
-
Arkhipov Ievgen, Mgr. Ph.D.
-
Kvita Jiří, Mgr. Ph.D.
-
Peřina Jan, prof. RNDr. Ph.D.
|
Course content
|
1. Limits and functions, derivatives 2. Integrals, Jacobian 3. Taylor expansion 4. Usual diferencial equations 5. Fourier transformation 6. Linear algebra, eigenvectors, eigenvalues 7. Fourier series 8. Vector algebra, sums, delta and epsilon tensors 9. Fourvectors* 10. Basics of complex variable analysis* 11. Special polynomials* * if time permits
|
Learning activities and teaching methods
|
Lecture
- Homework for Teaching
- 17 hours per semester
- Attendace
- 26 hours per semester
- Preparation for the Course Credit
- 17 hours per semester
|
Learning outcomes
|
The goal is to remind students and extend selected mathematical concepts and tools important for quantum mechanics, optics, thermodynamics etc, focusing on practical examples in an applied manner.
Knowledge Getting familiar with useful mathematical aparatus for understanding physics.
|
Prerequisites
|
Knowledge in the scope of course topics (examination).
|
Assessment methods and criteria
|
Student performance
Knowledge within the scope of the course topics.
|
Recommended literature
|
-
Čihák, P. a kol. Matematická analýza pro fyziky IV.
-
Kopáček, J. Matematická analýza nejen pro fyziky I-IV.
-
Motl L., Zahradník M. (1999). Pěstujeme lineární algebru. Karolinum, Praha.
|