Lecturer(s)
|
-
Hradil Zdeněk, prof. RNDr. CSc.
-
Ježek Miroslav, RNDr. Ph.D.
|
Course content
|
1. Description and properties of electromagnetic radiation, basic types of optical media and their use. 2. Solution of Maxwell equations in ray optics approach, eikonal and ray equations, Fermat´s principle and its application, vectorial form of the refraction law. 3. Description of light propagation in non-homogeneous media, laminar media and media with spherical symmetry of the refractive index (Lunneburg and Maxwell lenses). 4. Media with cylindrical symmetry of refractive index, paraxial analysis of gradient lenses and fibers, OSLO simulations of gradient elements. 5. Matrix optics and its use for paraxial imaging and analysis of resonator stability. 6. Paraxial optical beams, basic parameters and properties of Gaussian beams. 7. Measurement of laser beams, determining waist radius, angular divergence and M2 factor. 8. Matrix transformation of Gaussian beams, optimal focusing and collimation, design of laser beam expanders. 9. Nonstandard types of paraxial beams, their properties and use, description and properties of H-G and L-G beams. 10. Nondiffractive beam solutions to Helmholtz equation and their experimental implementation, description and properties of Bessel beams. 11. Fourier representation of optical signal, free-space propagation of light, impulse response function and optical transfer function. 12. Quadratic phase of refractive lenses, optical implementation of Fourier transform, 4-f system and its use in spatial spectrum filtering.
|
Learning activities and teaching methods
|
Lecture
- Preparation for the Exam
- 52 hours per semester
|
Learning outcomes
|
Description and properties of electromagnetic radiation, basic types of optical media and their use Solution of Maxwell equations in ray optics approximation. Fundamentals of beam and Fourier optics.
Knowledge of principles of ray and wave optics, an ability to simulate optical phenomena in optical software OSLO Premium and VirtuaLab.
|
Prerequisites
|
Knowledge within the scope of the basic optics course OPT/PO.
|
Assessment methods and criteria
|
Written exam
Knowledge in the scope of the syllabus.
|
Recommended literature
|
-
Goodman, J. W. (1968). Introduction to Fourier Optics. Singapur, McGraw-Hill Book Co.
-
Guenther R. D. (1990). Modern Optics. J. Wiley & Sons, NY.
-
Kuběna, J. (1994). Úvod do optiky. MU Brno.
-
Malý, P. (2008). Optika. Praha: Nakladatelství Karolinum.
-
Pospíšil, J. (1983). Základy optiky I, část A a B. UP Olomouc.
-
Pospíšil, J. (1990). Základy vlnové optiky, část A a B. UP Olomouc.
-
Saleh, B.E.A., Teich, M.C. (1995). Základy fotoniky. český překlad Matfyzpress, UK Praha.
-
Saleh, B.E.A., Teich, M.C. (1994). Základy fotoniky. Matfyzpress, Praha.
-
Siegman, A. E. (1986). Lasers. University Science Books.
|