Lecturer(s)
|
-
Dofková Radka, doc. PhDr. Ph.D.
-
Laitochová Jitka, doc. RNDr. CSc.
|
Course content
|
- Differential calculus of real functions of a real variable and its applications. It is focused at basic terms of the theory like real functions of a real variable, limits, continuity, derivativs, maxima and minima and graph sketching. - Integral calculus of real functions of a real variable. Main topics are indefinite integral, definite integral and applications of definite integral.
|
Learning activities and teaching methods
|
Dialogic Lecture (Discussion, Dialog, Brainstorming), Work with Text (with Book, Textbook)
|
Learning outcomes
|
Differential and integral calculus of functions of one real variable: Limits, continuity and derivatives. Graphs of functions. Approximation of functions. Indefinite integral. Definite integral. Applications of definite integrals.
Know how to use calculus to study functions (sketch the graph), to find maxima and minima and to approximate functions. Ability to integrate and know applications of the definite integral.
|
Prerequisites
|
Knowledge and skills of secondary school mathematics. Knowing sequences of elementary functions.
|
Assessment methods and criteria
|
Mark
Passing tests, elaboration of homeworks.
|
Recommended literature
|
-
Jarník, V. (1955). Diferenciální počet I.. Praha.
-
Jarník, V. Integrální počet I.
-
Laitochová, J. (2010). Functions and Graphs. Olomouc.
-
Laitochová, J. (2007). Matematická analýza 1. Diferenciální počet - 1. část. Olomouc : Univerzita Palackého.
-
Laitochová, J. (2004). Matematická analýza 1. Diferenciální počet - 2. část. Olomouc : Univerzita Palackého.
-
Škrášek, J. Tichý, Z. (1983). Základy aplikované matematiky. Praha: SNTL.
-
Thomas, G.,B. (2008). Thomas' Calculus. Pearson Addison Wesley.
|