Lecturer(s)
|
-
Pastor Karel, doc. Mgr. Ph.D.
|
Course content
|
Single, double and triple integrals. (Construction of Reimann integral, geometrical meaning. Definition of Riemann integrable functions. Fubini theorems. Transformation to polar coordinates. Transformation into cylindrical and spherical coordinates. Improper Riemann integral.)
|
Learning activities and teaching methods
|
Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming), Work with Text (with Book, Textbook)
|
Learning outcomes
|
Integral calculus of functions of one, two and three variables. Reimannův and Newton definite integral. Double and triple integrals. Applications.
Knowledge of integral calculus of functions of one, two and three variables, applications, in particular for calculations of volumes of solids.
|
Prerequisites
|
Basic knowledge of functions of one variable and knowledge of differential calculus of functions of one, two or more variables.
|
Assessment methods and criteria
|
Mark, Oral exam, Written exam
Passing tests, elaboration of homework.
|
Recommended literature
|
-
Drábek P., Mika, S. (1999). Matematická analýza II. . Plzeň: ZČU.
-
Laitochová, J. (2003). Matematická analýza 2. Integrální počet.. Olomouc: UP.
-
Nagy, J., Nováková, E. (1983). Integrální počet . Praha: SNTL.
-
Rektorys, K. (1977). Aplikovaná matematika. Praha: SNTL.
|