Lecturer(s)
|
-
Dofková Radka, doc. PhDr. Ph.D.
-
Halas Zdeněk, Mgr. Ph.D.
-
Zdráhal Tomáš, doc. RNDr. CSc.
|
Course content
|
1. Mathematics in Ancient Egypt. 2. Mathematics in Mesopotania. 3. Mathematics in Ancient Greece. 4. Chinese mathematics, mathematics in India. 5. Mathematics in Islamic countries. 6. Mathematics in Mediaval Europe. 7. Beginnings of differential and integral calculus. 8. Historical textbooks of mathematics.
|
Learning activities and teaching methods
|
Dialogic Lecture (Discussion, Dialog, Brainstorming)
|
Learning outcomes
|
Students will acquire an overview of the historical development of mathematics.
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Analyssis of the Student's Portfolio
Home preparation for the lessons and elaboration of homework.
|
Recommended literature
|
-
EUKLIDES. (1907). Základy (přel. F. Servít). Praha: Albert Malíř.
-
Halas, Z. (2005). Archimédova metoda. Praha: Matfyzpress.
-
Heath, T. L. (1897). The works of Archimedes. Cambridge: CUP.
-
Sir, Z. (2011). Recké matematické texty. Praha.
-
TOOMER, G.J. (1998). Ptolemy´s Almagest. Princeton: PUP.
|