Lecturer(s)
|
-
Dofková Radka, doc. PhDr. Ph.D.
-
Mádrová Vladimíra, RNDr. CSc.
-
Laitochová Jitka, doc. RNDr. CSc.
|
Course content
|
Differential calculus of real functions of a real variable and its applications. It is focused at basic terms of the theory like real functions of a real variable, limits, continuity, derivativs, maxima and minima and graph sketching. Content: Basic terms and concepts Limits Derivatives Transcendental functions Application of derivatives Curve sketching with derivatives Approximations of functions (differentials, Taylor's theorem) Derivatives of implicit functions Sequences
|
Learning activities and teaching methods
|
Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming), Work with Text (with Book, Textbook)
- Attendace
- 39 hours per semester
- Homework for Teaching
- 26 hours per semester
- Preparation for the Exam
- 20 hours per semester
- Preparation for the Course Credit
- 6 hours per semester
|
Learning outcomes
|
Differential number of functions of one variable and its application. Limits. Continuous functions. Derivations. Determining the shape of a function.
Know how to use calculus to study functions (sketch the graph), to find maxima and minima and to approximate functions.
|
Prerequisites
|
Knowledge of secondary school mathematics, especially functions.
|
Assessment methods and criteria
|
Mark, Oral exam, Written exam
Passing tests, elaboration of homework.
|
Recommended literature
|
-
Jarník, V. (1955). Diferenciální počet I.. Praha.
-
Laitochová, J. (2010). Functions and Graphs. Olomouc.
-
Laitochová, J. (2007). Matematická analýza 1. Diferenciální počet - 1. část. Olomouc : Univerzita Palackého.
-
Laitochová, J. (2004). Matematická analýza 1. Diferenciální počet - 2. část. Olomouc : Univerzita Palackého.
-
Škrášek, J. Tichý, Z. (1983). Základy aplikované matematiky. Praha: SNTL.
-
Thomas, G.,B. (2008). Thomas' Calculus. Pearson Addison Wesley.
|