Lecturer(s)
|
-
Dofková Radka, doc. PhDr. Ph.D.
-
Uhlířová Martina, RNDr. Ph.D.
-
Hanzel Pavol, prof. RNDr. CSc.
-
Zdráhal Tomáš, doc. RNDr. CSc.
-
Pastor Karel, doc. Mgr. Ph.D.
|
Course content
|
Relation between individual numeral structures. More detailed insight into the algorithms of numeric operations. Formation of complex numbers due to the practical need for solving impedance in electric circuits. Hypercomplex systems (element of quaternions - at least outline).
|
Learning activities and teaching methods
|
Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
- Attendace
- 4 hours per semester
- Homework for Teaching
- 12 hours per semester
|
Learning outcomes
|
The course covers Peano axioms for the natural numbers, numeral systems with general radices, and basic operations in these systems. Also, constructions of numeral structures, including the division ring of complex numbers, are performed.
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Mark
Active participation in the lessons and the elaboration of a seminar paper.
|
Recommended literature
|
-
BLAŽEK, J. a kol.: Algebra a teoretická aritmetika 1, 2. Praha: SPN, 1983, 1985.14-514-83, 14-470-85..
-
KATRIŇÁK, T. a kol.: Algebra a teoretická aritmetika 1. Bratislava, Praha: ALFA, SNTL, 1985. 63-568-85..
-
KOPECKÝ, M.: Aritmetika, pracovní skriptum, Olomouc, UP, 1999.
-
ŠALÁT, T. a kol.: Algebra a teoretická aritmetika 2. Bratislava, Praha: ALFA, SNTL, 1986. 63-554-86..
|