<ol> <li> Functions of a single real variable ? bounded, monotone, one-to-one functions. Composite functions, inverse functions. Overview of elementary functions. <li> Sequences of real numbers ? bounded, monotone sequences. Limit of a sequence, convergent and divergent sequences; limes superior, limes inferior . <li> Limit of a function ? definition, geometrical interpretation, computing rules. One-sided limits, infinite limits and limits at infinity. <li> Continuity of functions ? in a point, on an interval; points of discontinuity. Continuity of composite and inverse functions. <li> Differentiation ? definition, geometrical meaning, computing rules. Differentiation of composite and inverse functions. Differentiation of elementary functions. <li> Differential of a function, basic theorems of differential calculus. Graph sketching ? extreme values, convex and concave functions, asymptotes. <li> Primitive function, table of basic primitive functions. Computing rules ? per partes, substitutions, integration of rational functions. <li> Riemann integral ? definition, the fundamental theorem of integral calculus. Integration by parts, substitution methods for computing definite integral. <li> Geometrical applications of the definite integral ? computing areas, length of curves, volumes of bodies. <\lo>
|
-
Adams R.A. (1991). Calculus: a complete course. Addison-Wesley New York.
-
Finney R.L., Thomas G.B. (1992). Calculus. Addison-Wesley New York.
-
Jarník V. (1984). Diferenciální počet I. Akademia Praha.
-
Jarník V. (1984). Integrální počet I. Academia Praha.
-
KOPÁČEK J. (2016). Matematická analýza nejen pro fyziky (I). Matfyzpress, Praha.
-
MÁDROVÁ V., MAREK J. (2013). Sborník úloh z diferenciálního počtu v R: (364 řešených příkladů a 1111 cvičení). Olomouc: Univerzita Palackého v Olomouci.
-
Míka S., Drábek P. (2003). Matematická analýza II. Západočeská univerzita Plzeň.
-
MÍKA S.,DRÁBEK P. (2003). Matematická analýza II.. Západočeská univerzita Plzeň.
-
Schwabik Š.,Šarmanová P. (2000). Malý průvodce historií integrálu. MU Brno.
-
Škrášek J., Tichý J. (1990). Aplikace matematiky I. a II.. SNTL Praha.
|