Lecturer(s)
|
-
Fišerová Eva, doc. RNDr. Ph.D.
-
Vaňkátová Kristýna, Mgr.
|
Course content
|
1. Design of experiments. 2. Basic optimum criteria. 3. Theorems on equivalence and their application. 4. Iterative procedures for determination of the optimum design. 5. Analysis of variance. 6. Block designs. 7. The Latin square design, the Graeco-Latin square design. 8. Incomplete block designs. 9. Factorial designs. 10. Two-level factorial designs. 11. Response surface methodology. 12. Experimental designs for fitting response surfaces.
|
Learning activities and teaching methods
|
Lecture, Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
- Homework for Teaching
- 30 hours per semester
- Attendace
- 39 hours per semester
- Semestral Work
- 20 hours per semester
- Preparation for the Exam
- 30 hours per semester
|
Learning outcomes
|
Understand statistical methods for design of experiment.
Knowledge To know algorithms used in practice for optimization of regression experiment and algorithms used for processing the obtained data.
|
Prerequisites
|
Basic knowledge of probability theory and mathematical statistics.
|
Assessment methods and criteria
|
Oral exam, Written exam
Credit: active participation in seminars, the student has to turn in individual homework Exam: the student has to present knowledge and understanding of the theory and methods
|
Recommended literature
|
-
A. Pázman, V. Lacko. (2012). Prednášky z regresných modelov. Odhadovanie parametrov strednej hodnoty a štatistická optimalizácia experimentu. Univerzita Komenského v Bratislave.
-
D.C. Montgomery. (2009). Design and Analysis of Experiments.
-
E. Fišerová. (2012). Lineární statistické modely.. Vydavatelství UP, Olomouc.
-
L. Kubáček, L. Kubáčková. (2000). Statistika a metrologie. Vydavatelství UP, Olomouc.
-
R.A. Bailey. (2008). Design of Comparative Experiments. Cambridge University Press.
-
R.H. Myers, D.C. Montgomery, Ch.M. Anderson-Cook. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments (4th Edition). Wiley.
|