Course: Statistical Software 5

« Back
Course title Statistical Software 5
Course code KMA/SSW5
Organizational form of instruction Seminar
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 3
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Fačevicová Kamila, Mgr. Ph.D.
Course content
1. ANOVA a nonparametric ANOVA 2. Graphical presentation of multivariate dataset, testing of normality and standardization. 3. Principal component analysis. 4. Canonical correlation analysis. Factor analysis. 5. Discrimination analysis. 6. Logistic regression.

Learning activities and teaching methods
Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
  • Attendace - 26 hours per semester
  • Homework for Teaching - 30 hours per semester
  • Semestral Work - 30 hours per semester
Learning outcomes
Statistical software R and SAS EG - ANOVA, multivariate methods, logistic regression.
Knowledge - Knowledge of procedures and functions for selected statistical methods.
Prerequisites
Basic knowledge of software R and SAS EG (data import and manipulations, summarization and data presentation).

Assessment methods and criteria
Student performance

Each student has to create a document with examples from seminars and homework.
Recommended literature
  • Online dokumentace softwaru R.
  • A. Field, G. Miles. (2010). Discovering Statistics Using SAS. London.
  • B. S. Everitt, T. Hothorn. (2006). A Handbook of Statistical Analyses Using R.
  • G. Der, B. S. Everitt. (2002). A Handbook of Statistical Analyses Using SAS.
  • I. Stankovičová, M. Vojtková. (2007). Viacrozmerné štatistické metódy s aplikáciami. Bratislava.
  • J. Verzani. (2005). Using R for Introductory Statistics.
  • R. M. Heiberger, B. Holland. (2004). Statistical Analysis and Data Display: An Intermediate Course with Examples in S-Plus, R, and SAS. Springer Texts in Statistics, Springer.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester