Lecturer(s)
|
-
Jašková Paulína, Mgr.
-
Štefelová Nikola, Mgr.
-
Hron Karel, prof. RNDr. Ph.D.
-
Nesrstová Viktorie, Mgr.
|
Course content
|
1. An Introduction 2. Libraries and Data Import 3. Data Import II 4. Data Import and Manipulation I 5. Exercises. 6. Data Import and Manipulation II 7. Data Import and Manipulation III 8. Data Import and Manipulation IV 9. Data Import and Manipulation V 10. Data Import and Manipulation VI 11. SQL I 12. SQL II
|
Learning activities and teaching methods
|
Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
- Attendace
- 26 hours per semester
- Preparation for the Course Credit
- 40 hours per semester
- Homework for Teaching
- 20 hours per semester
|
Learning outcomes
|
Working with statistical software SAS and SAS Enterprise Guide - data import and manipulation.
Knowledge - Knowledge of statistical software - data input and manipulations.
|
Prerequisites
|
Basic PC skills.
|
Assessment methods and criteria
|
Student performance
Each student has to import and transform an assigned data file and to pass on-line tests on PC.
|
Recommended literature
|
-
Dalgaard, P. (2008). Introductory Statistics with R. Springer, Heidelberg.
-
Matloff, N. (2009). The Art of R Programming. UC Davis.
-
Venables, W. N., Smith, D. M., R Core Team. (2014). An Introduction to R. R Foundation for Statistical Computing, Vienna, Austria.
|