Course: Probability Theory and Mathematical Statistics 2

« Back
Course title Probability Theory and Mathematical Statistics 2
Course code KMA/PST2
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Fišerová Eva, doc. RNDr. Ph.D.
  • Hron Karel, prof. RNDr. Ph.D.
  • Vencálek Ondřej, doc. Mgr. Ph.D.
  • Fačevicová Kamila, Mgr. Ph.D.
  • Jašková Paulína, Mgr.
  • Pavlů Ivana, Mgr. Ph.D.
Course content
1. Motivation to mathematical statistics, point estimators. 2. Interval estimators. 3. Parameter hypotheses testing. 4. Tests for large samples, tests of goodness of fit. 5. Contingency tables. 6. Regression analysis - regression line. 7. Multiple regression. 8. Assessment of quality of a regression model, logistic regression. 9. Analysis of variance with one factor (simple classification). 10. Correlation analysis - correlation coefficient. 11. Correlation analysis - multiple and partial correlation 12. Nonparametric methods

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
  • Attendace - 52 hours per semester
  • Preparation for the Course Credit - 20 hours per semester
  • Preparation for the Exam - 60 hours per semester
  • Homework for Teaching - 20 hours per semester
Learning outcomes
Understand mathematical statistics and its applications.
Application Apply probability theory to methods of mathematical statistics.
Prerequisites
Basic knowledge of probability theory.
KMA/PST1

Assessment methods and criteria
Oral exam, Written exam

Credit: the student has to pass two written tests (i.e. in each of them at least one whole example correct). Exam: pass written test (at least one whole example out of two correct), the student has to understand the subject and be able to prove the principal results.
Recommended literature
  • Budíková, M., Mikoláš, Š., Osecký, P. (2001). Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů.. MU, Brno.
  • Hron, K., Kunderová, P. (2015). Základy počtu pravděpodobnosti a metod matematické statistiky (2. vydání). VUP, Olomouc.
  • J. Anděl. (2005). Základy matematické statistiky. Praha, MATFYZPRESS.
  • Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K. (2002). Probability & statistics for engineers & scientists. Prentice Hall, Upper Saddle River.
  • Zvára, K. (2008). Regrese. MatfyzPress, Praha.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester