Lecturer(s)
|
-
Vodák Rostislav, RNDr. Ph.D.
|
Course content
|
Introduction: Thermodynamics laws, derivation of non-linear field theory, coupled thermoelasticity, linearization. Kinematics: bodies, deformations, motions, transport theorems, mass, conservation laws of mass, momentum. Force, stress, Cauchy stress theorem, Finite elasticity: The Piola - Kirchhoff stress, hyperelastic bodies. Linear elasticity, Korn inequality, special 2D cases. Contact problems and inequalities, inclusion and hemivariational inequalities.
|
Learning activities and teaching methods
|
Dialogic Lecture (Discussion, Dialog, Brainstorming), Work with Text (with Book, Textbook)
|
Learning outcomes
|
Gain knowledge of continuum mechanics problems and realize their essence and principles.
Knowledge Gain knowledge required in order to study and solve continuum mechanics problems.
|
Prerequisites
|
Master's degree in mathematics.
|
Assessment methods and criteria
|
Oral exam
Exam: to know and to understand the subject
|
Recommended literature
|
-
D.E. Carlson. (1972). Linear Thermoelasticity, Encyclopedia of Physics, VIa/2. Springer-Verlag, Berlin.
-
G. Duvaut, J. L. Lions. (1976). Inequalities in Mechanics and Physics. Springer, Berlin.
-
J. Haslinger, I., Hlaváček, J. Nečas, J. Lovíšek. (1982). Riešenie variačných nerovností v mechanike. ALFA, Bratislava.
-
J. Haslinger, M. Miettinen, P.D. Panagiotopoulos. (1999). Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications. Kluwer, Dordrecht.
-
J. Nečas, I. Hlaváček. (1983). Úvod do matematické teorie pružných a pružně plastických těles. SNTL, Praha.
-
M. E. Gurtin. (1981). An Introduction to Continuum mechanics. Academic Press, New York.
-
M. E. Gurtin. (1972). The linear theory of elasticity, Encyclopedia of Physics, VIa. Springer-Verlag, Berlin.
-
P.G. Ciarlet. Mathematical Elasticity, Volume I.: Three-dimensional elasticity, II.: Theory of plates. Elsevier, Amsterdam 1986, 1997.
|