Course: Functional Analysis

« Back
Course title Functional Analysis
Course code KMA/PGSFA
Organizational form of instruction Lecture
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 15
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Staněk Svatoslav, prof. RNDr. CSc.
  • Tomeček Jan, doc. RNDr. Ph.D.
Course content
Functional spaces. Basic principles of linear functional analysis. Operators (continuous, linear, compact, completely continuous, adjoint, closed). General forms of linear continuous functionls. Fredholm theorems. Spectral theory for linear operators. Fixed point theorems (Schauder and its corollaries, theorems based on degree of mapping, theorems in ordered spaces). Derivative of operators.

Learning activities and teaching methods
Dialogic Lecture (Discussion, Dialog, Brainstorming), Work with Text (with Book, Textbook)
Learning outcomes
Master methods and tools of linear functional analysis and tools of nonlinear functional analysis.
Comprehension Understand the theory of linear and nonlinear operators in functional spaces.
Prerequisites
Master's degree in mathematics.

Assessment methods and criteria
Oral exam

Exam: to know and to understand the subject.
Recommended literature
  • A. E. Taylor. (1977). Funkcionální analýza. Academia Praha.
  • Conway, J. B. (1990). A course in functional analysis. Springer.
  • J. Lukeš. (2001). Zápisky z funkcionální analýzy. MatFyzPress.
  • K. Deimling. (1985). Nonlinear functional analysis. Springer.
  • K. Najzar. (1988). Funkcionální analýza. SPN, Praha.
  • M. Fabian a kol. (2001). Functional Analysis and Infinite-Dimensional Geometry. Springer, Berlin.
  • S. Fučík, A. Kufner. (1978). Nelineární diferenciální rovnice. SNTL Praha.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester