Lecturer(s)
|
-
Tomeček Jan, doc. RNDr. Ph.D.
-
Rachůnková Irena, prof. RNDr. DrSc.
|
Course content
|
Types of solutions of initial problems. Existence and uniqueness. Dependence on initial values and parameters. Linear differential equations. Global properties of solutions. Stability. Periodic and bounded solutions. Differential inequalities and a priori estimates of solutions. Differential equations with singularities in time and in phase variables. Impulsive differential equations. Functional differential equations.
|
Learning activities and teaching methods
|
Dialogic Lecture (Discussion, Dialog, Brainstorming), Work with Text (with Book, Textbook)
|
Learning outcomes
|
Master essential tools of the theory of differential equations.
Comprehension Demonstrate a good orientation ín the theory of differential equations.
|
Prerequisites
|
Master's degree in mathematics.
|
Assessment methods and criteria
|
Oral exam
Exam: to know and to understand the subject
|
Recommended literature
|
-
A.Granas, M. Frigon. (1995). Topological Methods in Differential Equations and Inclusions. Kluwer, Dordrecht.
-
I.T. Kiguradze. (1975). Some Singular Boundary Value Problems for Ordinary Differential Equations. Izd. Tbilis. Univ. , Tbilisi.
-
J. Kalas, M. Ráb. (1995). Obyčejné diferenciální rovnice. Brno.
-
J. Kurzweil. (1978). Obyčejné diferenciální rovnice. SNTL, Praha.
-
J.H. Hubbart, B.H. West. Differential Equations: A Dynamical Systems Approach I, II. Springer-Verlag, New York, 1991, 1995.
-
J.K. Hale, S.M.Verduyn Lunel. (1993). Introduction to Functional Differential Equations. Springer.
-
M. Greguš, M. Švec, V. Šeda. (1985). Obyčajné diferenciálne rovnice. Alfa, SNTL.
-
P. Hartman. (1964). Ordinary Differential Equations. John Wiley and Sons, New York.
-
V. Lakshmikantham, D.D. Bainov, P.S.Simeonov. (1989). Theory of Impulsive Differential Equations. World Scientific, Singapore.
|