Course: Operational Research

« Back
Course title Operational Research
Course code KMA/MMEP
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study 3
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory, Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Pavlačka Ondřej, RNDr. Ph.D.
  • Ženčák Pavel, RNDr. Ph.D.
Course content
1. Classification of mathematical modelling tools in Economics, basic principles of designing mathematical models in Operations Research. 2. Network analysis: activity on arrow models - basic concepts, CPM method, PERT method, time-cost analysis, activity on node models - basic concepts, MPM method. 3. Renewal models: renewal of ageing equipment models; renewal of failing element models. 4. Queueing theory models: descriptive models with single-server case with limited and unlimited queue, models of multiple-server case, models with priority queue, optimization models. 5. Deterministic inventory models: uniform demand (shortages not permitted, shortages permitted), multiproduct inventory models (inventory strategies, inventory control under the constraints). 6. Stochastic inventory models - a single period model with no setup cost, basic strategies of multi-period models.

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming), Projection (static, dynamic)
Learning outcomes
Gain knowledge and understanding of the selected models of operations research.
Understanding Student will understand the theoretical basis of the presented mathematical models. Application Students will be able to apply the presented mathematical methods to solving selected real-life problems.
Prerequisites
Basic calculus, Probability theory and Statistics
KMA/PST

Assessment methods and criteria
Mark, Oral exam, Written exam

Credit: Active participation, written test. Exam: The student has to be able to describe particular models and to solve basic problems with these models.
Recommended literature
  • F. S. Hillier, G. J. Lieberman. (2001). Introduction to operations research, 7th edition. New York.
  • F. S. Hillier, G. J. Lieberman. (1990). Introduction to Stochastic Models in Operation Research. McGraw-Hill.
  • Fábry, J. (2011). Matematické modelování. Praha, Professional Publishing.
  • Gros, I. (2003). Kvantitativní metody v manažerském rozhodování. Grada, Praha.
  • Hušek, R., Maňas, M. (1989). Matematické modely v ekonomii. SNTL, Praha.
  • Jablonský, J. (2007). Operační výzkum - kvantitativní modely pro ekonomické rozhodování (3. vydání). Professional Publishing.
  • Michael Carter, Camille C. Price, Ghaith Rabadi. (2018). Operations Research: A Practical Introduction (Advances in Applied Mathematics) 2nd Edition. Chapman and Hall/CRC.
  • Šubrt, T. a kol. (2019). Ekonomicko-matematické metody - 3. vydání. Vydavatelství a nakladatelství Aleš Čeněk s.r.o.
  • Volejníková, J., Sluková, K., Liška, V. (2012). Matematické modelování. Praha, Professional Publishing.
  • Zimola, B. (2002). Operační výzkum [online]. Zlín, Vysoké učení technické v Brně. Fakulta managementu a ekonomiky ve Zlíně.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Data Science (2020) Category: Mathematics courses 3 Recommended year of study:3, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Industrial Mathematics (2020) Category: Mathematics courses 3 Recommended year of study:3, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Business Mathematics (2021) Category: Mathematics courses 3 Recommended year of study:3, Recommended semester: Winter