Lecturer(s)
|
-
Ludvík Pavel, RNDr. Ph.D.
-
Tomeček Jan, doc. RNDr. Ph.D.
-
Bebčáková Iveta, Mgr. Ph.D.
|
Course content
|
A. Mathematical prerequisites: 1. On natural science, mathematics, logic and numbers. 2. What you should know from the high school. 3. Elements of probability. B. Linear algebra: 1. Mappings, linear mappings, matrices and systems of linear equations. C. Elements of mathematical analysis: 1. The notion of a function, operations with functions. 2. Continuity and limits. 3. Differentiation. 4. Integration and differential equations.
|
Learning activities and teaching methods
|
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
- Attendace
- 26 hours per semester
- Preparation for the Exam
- 35 hours per semester
|
Learning outcomes
|
Understand the basic mathematical language for the description of Nature
Comprehension Understand the basics of mathematical analysis, linear algebra and statistical analysis.
|
Prerequisites
|
Elementary school mathematics.
|
Assessment methods and criteria
|
Written exam, Dialog
active attendance, passing the test
|
Recommended literature
|
-
J. Kopáček. (2005). Matematická analýza pro fyziky I. Matfyzpress, Praha.
-
J. Veselý. (2001). Matematická analýza pro učitele I. Matfyzpress.
-
K. Rektorys. (1963). Přehled užité matematiky. SNTL Praha.
-
Kovalt V. (2003). Základy matematiky pro biologické obory. Karolinum Praha.
-
Rudin, W. (1964). Principles of Mathematical Analysis. McGraw-Hill.
|