1. The function of one variable - bounded, monotone, simple, composite function, inverse function, survey of elementary functions. 2. Sequence, the limit of sequence - bounded sequence, monotone sequence, convergent sequence, divergent sequence, limes superior, limes inferior. 3. The limit of function - the geometric sense of the limit of function, finite limit, infinite limite, limit on the right, limit on the left. 4. The continuity of function - continuity of a function at a point, points of discontinuity, continuity on an interval, continuity in parts, continuity of a composite and an inverse function. 5. The derivative of function - the definition of the derivative of function, the geometric sense of the derivative of function, the rules of differentation, the derivative of composite function, the derivative of inverse function, the derivative of elementary functions. 6. The course of function - the differential of function, the basic theorems of differential calculus, the extrema of function, convex and concave curves, asymptotes. 7. Indefinite integral - primitive function, the survey of basis indefinite integrals, integration by parts, change of variable in an indefinite integral, primitives of rational functions. 8. The Riemann definite integral - introducing of a notion, the fundamenthal theorem of integral calculus, integration by parts and change in a definite integral. 9. The geometric interpretation of definite integral - the area of plane surface, arc length, the volume of solid.
|
-
Adams R.A. (1991). Calculus: a complete course. Addison-Wesley New York.
-
Acheson D. (2018). The Calculus Story : A Mathematical Adventure. Oxford University Press.
-
Finney R.L., Thomas G.B. (1992). Calculus. Addison-Wesley New York.
-
Hošková Š., Kuben J., Račková P. Integrální počet funkcí jedné proměnné. VŠB-TU Ostrava.
-
Jarník, V. (1984). Diferenciální počet I. Academia, Praha.
-
Jarník V. Integrální počet I. libovolné vydání.
-
Kuben J.,Šarmanová P. (2006). Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava.
-
Míka S., Drábek P. (2003). Matematická analýza II. Západočeská univerzita Plzeň.
-
Míka S., Drábek P. (2003). Matematická analýza I. ZČU Plzeň.
-
Schwabik Š.,Šarmanová P. (2000). Malý průvodce historií integrálu. MU Brno.
-
Škrášek J., Tichý J. (1990). Aplikace matematiky I. a II.. SNTL Praha.
|