Course: Time Series

« Back
Course title Time Series
Course code KMA/CAS
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study 3
Semester Winter
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory, Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Vencálek Ondřej, doc. Mgr. Ph.D.
  • Fačevicová Kamila, Mgr. Ph.D.
  • Pavlů Ivana, Mgr. Ph.D.
Course content
1. Specifics of time series analysis, evaluation of prediction quality. 2. Modeling of time series trends using mathematical curves: constant, linear, quadratic trend, exponential, shifted exponential, logistic, Gompertz trend. 3. Adaptive methods for time series trend modeling - moving averages method, exponential smoothing. 4. Modeling the seasonal component of time series - regression approach, model of hidden periods, Holt-Winters method. 5. Random component analysis (randomness tests). 6. Box-Jenkins methodology: MA, AR, ARMA, ARIMA, and SARIMA processes.

Learning activities and teaching methods
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming), Demonstration
Learning outcomes
The aim is to acquaint students with the basic procedures in the analysis of time series.
The student will be able to independently analyze a time series, make a prediction in this time series and evaluate the quality of this prediction.
Prerequisites
Basics of probability theory and statistics.

Assessment methods and criteria
Oral exam, Seminar Work

Credit: active participation, seminar work Exam: oral
Recommended literature
  • Arlt, J., Arltová, M. (2007). Ekonomické časové řady. Grada, Praha.
  • Cipra, T. (1986). Analýza časových řad s aplikacemi v ekonomii. SNTL, Praha.
  • Hindls R., Hronová S., Seger J., Fischer J. (2007). Statistika pro ekonomy. Professional Publishing.
  • Hyndman, R.J., Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast package for R. Journal of Statistical Software, 27(3).
  • Tetlock, P. E., Gardner, D. (2016). Superprognózy ? umění a věda předpovídání budoucnosti. Jan Melvil, Brno.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Data Science (2020) Category: Mathematics courses 3 Recommended year of study:3, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Industrial Mathematics (2020) Category: Mathematics courses 3 Recommended year of study:3, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Applied Mathematics - Specialization in Business Mathematics (2021) Category: Mathematics courses 3 Recommended year of study:3, Recommended semester: Winter