Course: Computational Methods in GI

« Back
Course title Computational Methods in GI
Course code KGI/VYMET
Organizational form of instruction Lecture + Exercise
Level of course Bachelor
Year of study 1
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Macků Karel, Mgr. Ph.D.
Course content
1. Mathematical Repertory 2. Goniometry 3. Functions 4. Introduction to linear algebra (vectors, matrices) 5. Sequences, series, limits 6. Derivation 7. Integrals 8. Basic combinatorial concepts 9. Introduction to probability theory 10. Propositional logic

Learning activities and teaching methods
unspecified
Learning outcomes
Prerequisites
unspecified

Assessment methods and criteria
unspecified
Recommended literature
  • Hron, K., & Kunderová, P. (2013). Základy počtu pravděpodobnosti a metod matematické statistiky. Olomouc: Univerzita Palackého v Olomouci.
  • J. Kojecká. (1998). Řešené příklady z MA II a III. Skriptum UP Olomouc.
  • Kojecká J., Kojecký, T. (2001). Matematická analýza I. UP Olomouc.
  • Kojecká, J., Kojecký, T., Závodný, M. (2004). Úvod do matematiky pro geoinformatiky. Olomouc: UP.
  • Kojecká, Závodný. (1999). Příklady z MA I.. UP Olomouc.
  • Ploner, A., & Dutter, R. (2000). New directions in geostatistics. J. of statistical planning and inference, 91(2), 499-509.
  • Rypka, M., Tuček, P. (2013). Matematika pro geocomputation. Univerzita Palackého, Olomouc.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Geoinformatics and Cartography (2020) Category: Geography courses 1 Recommended year of study:1, Recommended semester: Winter
Faculty: Faculty of Science Study plan (Version): Geoinformatics and Cartography (2020) Category: Geography courses 1 Recommended year of study:1, Recommended semester: Winter