Lecturer(s)
|
-
Mikeš Josef, prof. RNDr. DrSc.
|
Course content
|
Riemannian and pseudo-Riemannian metric, Christoffel symbols, Riemannian and Ricci tensor. The theory of curvature of Riemannian spaces, special coordinate systems. Geodesic curves. Isometric conformal mappings.
|
Learning activities and teaching methods
|
Work with Text (with Book, Textbook)
|
Learning outcomes
|
Comprehension of spaces equipped with the metric tensor which are generalization of Euclidean space and have physical applications.
2. Comprehension Recall properties of Riemannian and Ricci tensor of a Riemannian manifold.
|
Prerequisites
|
Knowledge the principles on university mathematics level.
|
Assessment methods and criteria
|
Oral exam
Oral exam.
|
Recommended literature
|
-
Eisenhart L.P. (1947). Riemannian Geometry. AMX Princeton.
-
Jost J. (2002). Riemannian Geometry and Geometric Analysis. Springer.
-
Kowalski, O. (1995). Úvod do Riemannovy geometrie. Praha.
-
Mikeš, J., Kiosak, V., Vanžurová, A. (2008). Geodesics Mappings of Manifolds with Affine Connection. Olomouc, Palackého univerzita.
-
Sinyukov, N. S. (1979). Geodesic mappings of Riemannian spaces. Nauka Moskva.
|