Lecturer(s)
|
-
Janek Vojtěch, Mgr.
-
Chodorová Marie, RNDr. Ph.D.
-
Vaněk Vladimír, Mgr. Ph.D.
|
Course content
|
1. Elements of propositional calculus (proposition, propositional connective, propositional calculus formula, the rules of logic, truth-tables). 2. Elements of predicate logic (propositional function, quantifiers, negation of propositional function with quantifiers). 3. Sets logic conception in mathematics. 4. Logic construction of mathematics (axiom, definition, proposition, proof). 5. Proofs of mathematics propositions. 6. Elements shapes of plane geometry (perimeters and areas planar shapes). 7. Elements shapes of solid geometry (circumference and capacity solids).
|
Learning activities and teaching methods
|
Monologic Lecture(Interpretation, Training), Demonstration
|
Learning outcomes
|
To deepen knowledges in school mathematics, especially functions, to master solving teh school tasks
2. Comprehension To deepen knowledges in school mathematics, especially functions, to master solving teh school tasks
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Didactic Test
Credit: active participation on seminars (70%),the student has to pass written tests (minimal achievement: 80%)
|
Recommended literature
|
-
učebnice pro střední školy nakladatelství Prométheus.
-
Gavalcová, T., Haviger, J., Pražák, P., Vaněk, V. (2007). Úvod do matematiky. Gaudeamus Hradec Králové.
-
Petáková, J. (1998). Matematika příprava k maturitě a k přijímacím zkouškám na vysoké školy. Prometheus.
-
Polák, J. (2000). Přehled středoškolské matematiky. Praha, Prométheus.
-
Vaněk Vladimír, Smetanová Dana. Matematika 1.
|