Lecturer(s)
|
-
Janek Vojtěch, Mgr.
-
Vítková Lenka, Mgr. Ph.D.
-
Calábek Pavel, RNDr. Ph.D.
|
Course content
|
1. Number sets, supremum, infimum. 2. Number sequences, monotonicity, limits. 3. Functions and their characteristics, composite and inverse functions. 4. Limits of functions, continuity. 5. Differential calculus: Differentiation, the differential of a function, fundamental theorems, course of a function.
|
Learning activities and teaching methods
|
Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
|
Learning outcomes
|
Understand the mathematical tools of differential calculus of functions of a single variable.
Comprehension Understand the mathematical tools of differential calculus of functions of a single variable.
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Oral exam, Written exam
Credit: the student has to turn in all pieces of homework and obtain at least 40% of points in every short test during the semester and at least half of the possible points in the final (long) test. Exam:
|
Recommended literature
|
-
G. S. Simmons. (2005). Calculus With Analytic Geometry. McGraw-Hill.
-
J. Brabec, B. Hrůza. (1989). Matematická analýza II. SNTL Praha.
-
J. Brabec, F. Martan, Z. Rozenský. (1989). Matematická analýza I. Praha: SNTL.
-
Jarník V. (1984). Diferenciální počet I. Akademia Praha.
-
Jarník V. (1984). Integrální počet I. Academia Praha.
-
Novák V. (1988). Diferenciální počet v R.. UJEP Brno.
-
P. Calábek, J.Švrček, S. Trávníček. Matematická analýza I a II (pro učitelské obory).
|