Lecturer(s)
|
-
Mikeš Josef, prof. RNDr. DrSc.
|
Course content
|
1. Vector functions 2. Parametrization of curves. Orientation. Means of determinacy of curves. 3. Length of a curve, natural parameter. 4. Tangent, osculating plane, moving Frenet frame 5. Frenet formulae, curvature, torsion. Natural equations of a curve. Conditions for differentiability. 6. Contact of curves, osculating circle 7. Conics 8. Parametrization of surfaces. Means of determinacy of surfaces. 9. Tangent, tangential plane, normal of a surface 10. First and second fundamental form of a surface. 11. Messnier formulae and theorem 12. Principal directions. Normal, geodetic, principal, mean, Gauss curvature. Euler formulae. 13. Gauss and Weiengarten formulae. 14. Gauss and Peterson-Codazzi-Mainardi formulae. Christoffel symbols. 15. Theorem Egregium. 16. Special curves on a surface. 17. Special surfaces (developable, constant curvature, rotational) 18. Surfaces of the second order 19. Differentiable manifold, affine connection, Riemannian manifold 20. Variation problem, geodesics. Isoparametric curves.
|
Learning activities and teaching methods
|
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
|
Learning outcomes
|
Understand theory of curves and surfaces.
1. Knowledge Understanding of principles of the diffential geometry on curves and surfaces.
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Oral exam, Written exam
Credit: active participation on laboratory and succesfull to pass test. Exam: the student has to undrestand the subject and be able to prove the principal results.
|
Recommended literature
|
-
Berger, M. (1987). Geometry I, II. Universitext Springer-Verlag Berlin.
-
Budínský, B., Kepr, B. (1970). Základy diferenciální geometrie s technickými aplikacemi. SNTL Praha.
-
Doupovec, M. (1999). Diferenciální geometrie a tenzorový počet. VUT Brno.
-
Gray, A. (1994). Differential geometry. CRC Press Icn.
-
Gray, A. (2006). Modern Differential Geometry of Curves and Surfaces.. Chapman \& Hall/CRC, Boca Raton, FL.
-
J. Mikeš, E. Stepanova, A. Vanžurová et al. (2015). Differential geometry of special mappings. UP Olomouc.
-
J. Mikeš, M. Sochor. (2013). Diferenciální geometrie ploch v úlohách. UP OLomouc.
-
Kolář, I., Pospíšilová, L. (2007). Diferenciální geometrie křivek a ploch. El. publ. MU Brno.
-
Metelka, J. (1969). Diferenciální geometrie. SPN Praha.
-
Mikeš, J., Kiosak, V., Vanžurová, A. (2008). Geodesic mappings of manifolds with affine connection. UP Olomouc.
-
Oprea, J. (2007). Differential geometry and its aplications. MAA Pearson Educ.
|