Lecturer(s)
|
-
Stoklasa Jan, Mgr. et Mgr. Ph.D.
|
Course content
|
Content: Differential and integral calculus of functions of one variable, linear algebra Topics: 1.Set and its properties, relationship between a point and a set. Function and its properties, overview of basic elementary functions. 2.Numerical sequences, their properties, limit of a sequence. 3.Limit and continuity of a function. 4.Derivation of a function, differential and derivatives of higher orders. 5.Application of differential calculus, behaviour of a function. 6.Primitive function and indefinite integral, methods of integration. 7.Indefinite integral, its properties and calculation. 8.Application of integral calculus. 9.Vectors. 10.Matrixes. 11.Determinants. 12.Systems of linear algebraic equations.
|
Learning activities and teaching methods
|
Lecture, Dialogic Lecture (Discussion, Dialog, Brainstorming)
- Homework for Teaching
- 25 hours per semester
- Attendace
- 50 hours per semester
- Preparation for the Exam
- 25 hours per semester
|
Learning outcomes
|
The aim of this course is to deepen the knowledge of mathematics necessary for the application of methods of economic decision-making.
The ability to use mathematical operations in economic decision-making.
|
Prerequisites
|
No specific prerequisites.
|
Assessment methods and criteria
|
Oral exam, Student performance
The course ends with a written examination. It is recommended that the students bring their own laptop for the exercises.
|
Recommended literature
|
-
B. P. Děmidovič. (2003). Sbírka úloh a cvičení z matematické analýzy. Fragment, Brno.
-
Barnett, R. A., Ziegler, M. R., Byleen, K. E. (2014). Calculus for Business, Economics, Life Sciences, and Social Sciences. Boston.
-
Barreto, H. (2009). Intermediate Microeconomics with Microsoft Excel. Cambridge.
-
Budínský, Charvát. (1987). Matematika I.. SNTL Praha.
-
Dadkhan, K. (2011). Foundations of Mathematical and Computational Economics. Springer Heidelberg.
-
Haeussler, E. F., Paul, R.S., Wood, R. J. (2011). Introductory Mathematical Analysis for Business, Economics and the Life and Social Sciences, 13th edition. Boston.
-
Hlaváček A. (1971). Sbírka řešených příkladů z vyšší matematiky I a II.. SPN, Praha.
-
Kaňka, Henzler. (1997). Matematika pro ekonomy (2). Ekopress, Praha.
-
Mádrová, Marek. (2004). Řešené příklady a cvičení z matematické analýzy I.. VUP, Olomouc.
-
Mádrová V. (2004). Matematická analýza I.. VUP, Olomouc.
-
Prágerová A. (1987). Cvičení z matematiky. SNTL/ALFA, Praha.
|