Course: Proseminar in Mathematics for Physicists 2

» List of faculties » PRF » SLO
Course title Proseminar in Mathematics for Physicists 2
Course code SLO/PMF2
Organizational form of instruction Seminar
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 2
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Horváth Pavel, RNDr. Ph.D.
  • Havelková Martina, Mgr.
Course content
1. Linear algebra: Vectors, matrices, determinants, systems of linear equations (the Frobenius's Theorem and the Cramer's Rule). 2. Fundamentals of analytic geometry in plane and space. 3. Fundamentals of integral calculus: Indefinite integral, the Riemann integral, application in determination of curve length, area, surface and volume of a revolution solid. 4. Applications of differential and integral calculus in physics. 5. Functions of two variables: Partial derivative, differential. 6. Introduction to differential equations: First order ordinary differential equations. 7. Use of the software MATHEMATICA for selected themes - exercises.

Learning activities and teaching methods
Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
  • Attendace - 26 hours per semester
  • Preparation for the Course Credit - 4 hours per semester
Learning outcomes
Acquire the basic knowledge of mathematical analysis, linear algebra and geometry focused on physics applications.
Knowledge. Explain fundamental principles of integral calculus, differential calculus of functions of two variables, linear algebra and geometry. Apply knowledge on solutions of problems of mathematical analysis, algebra and geometry for physicists.
Prerequisites
Prior knowledge of the introductory course of the mathematical analysis.
SLO/PMF1

Assessment methods and criteria
Student performance

Colloquium: participation in the proseminar, passing a written test.
Recommended literature
  • BRABEC J., MARTAN F., ROZENSKÝ Z. (1989). Matematická analýza 1. SNTL, Praha.
  • KOPÁČEK J. (2007). Matematická analýza nejen pro fyziky (II). Matfyzpress, Praha.
  • KOPÁČEK J. (2004). Matematická analýza nejen pro fyziky (I). Matfyzpress, Praha.
  • KOPÁČEK J. (2006). Příklady z matematiky nejen pro fyziky (II). Matfyzpress, Praha.
  • KOPÁČEK J. (2005). Příklady z matematiky nejen pro fyziky (I). Matfyzpress, Praha.
  • KVASNICA J. (2004). Matematický aparát fyziky. Academia, Praha.
  • POLÁK J. (1995). Přehled středoškolské matematiky. Prometheus, Praha.
  • REKTORYS K. (1995). Přehled užité matematiky I a II. Prometheus, Praha.
  • RUSKEEPÄÄ H. (2009). Mathematica navigator - Mathematics, Statistics, and Graphics. Academic Press, London.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Science Study plan (Version): Instrument and Computer Physics (2019) Category: Physics courses 1 Recommended year of study:1, Recommended semester: Summer
Faculty: Faculty of Science Study plan (Version): Applied Physics (2019) Category: Physics courses 1 Recommended year of study:1, Recommended semester: Summer