Lecturer(s)
|
-
Tomeček Jan, doc. RNDr. Ph.D.
-
Fürst Tomáš, RNDr. Ph.D.
-
Ženčák Pavel, RNDr. Ph.D.
-
Ludvík Pavel, RNDr. Ph.D.
-
Bebčáková Iveta, Mgr. Ph.D.
|
Course content
|
A. Mathematical prerequisites: 1. About science, mathematics, logic and numbers. 2. What You should know from previous study. 3. Probability B. Linear algebra: 1. Mapping, linear mapping, matrices and systems of equations. C. Basics of mathematical analysis: 1. Functions, elementary functions and operations above them. 2. Continuity and limit of the function 3. Derivatives. 4. Integration and differential equations.
|
Learning activities and teaching methods
|
Lecture, Monologic Lecture(Interpretation, Training)
|
Learning outcomes
|
To comprehend the basic mathematical language..
Comprehension To comprehend the basic mathematical language.
|
Prerequisites
|
None
|
Assessment methods and criteria
|
Written exam
active attendance, passing the test
|
Recommended literature
|
-
J. Kopáček. (2005). Matematická analýza pro fyziky I. Matfyzpress, Praha.
-
J. Veselý. (2001). Matematická analýza pro učitele I. Matfyzpress.
-
K. Rektorys. (1963). Přehled užité matematiky. SNTL Praha.
-
Kovalt V. (2003). Základy matematiky pro biologické obory. Karolinum Praha.
-
Rudin, W. (1964). Principles of Mathematical Analysis. McGraw-Hill.
|