Course: Differential Equations

» List of faculties » PRF » KMA
Course title Differential Equations
Course code KMA/PGSM2
Organizational form of instruction Lecture
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Tomeček Jan, doc. RNDr. Ph.D.
  • Andres Jan, prof. RNDr. dr hab. DSc.
  • Rachůnková Irena, prof. RNDr. DrSc.
Course content
Types of solutions of initial problems. Existence and uniqueness. Dependence on initial values and parameters. Linear differential equations. Global properties of solutions. Stability. Periodic and bounded solutions. Differential inequalities and a priori estimates of solutions. Differential equations with singularities in time and in phase variables. Impulsive differential equations. Functional differential equations.

Learning activities and teaching methods
Work with Text (with Book, Textbook)
Learning outcomes
To master essential tools of the theory of differential euquations.
Comprehension Demonstrate a good orientation ín the theory of differential equations.
Prerequisites
Master degree in mathematics.

Assessment methods and criteria
Oral exam

Oral exam. To master essential tools of the theory of differential euquations.
Recommended literature
  • Aktuální odborné články v mezinárodních matematických časopisech.
  • Andres, J., Gorniewicz, L. (2003). Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht.
  • I.T. Kiguradze. (1975). Some Singular Boundary Value Problems for Ordinary Differential Equations. Izd. Tbilis. Univ. , Tbilisi.
  • J. Kalas, M. Ráb. (1995). Obyčejné diferenciální rovnice. Brno.
  • J.H. Hubbart, B.H. West. Differential Equations: A Dynamical Systems Approach I, II. Springer-Verlag, New York, 1991, 1995.
  • M. Greguš, M. Švec, V. Šeda. (1985). Obyčajné diferenciálne rovnice. Alfa, SNTL.
  • P. Hartman. (1964). Ordinary Differential Equations. John Wiley and Sons, New York.
  • Wirkus, Stephen A., Swift. Randall J. (2015). A course in ordinary differential equations. Boca Raton, Fla. : CRC Press.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester