Lecturer(s)
|
-
Tomeček Jan, doc. RNDr. Ph.D.
-
Andres Jan, prof. RNDr. dr hab. DSc.
-
Rachůnková Irena, prof. RNDr. DrSc.
|
Course content
|
Types of solutions of initial problems. Existence and uniqueness. Dependence on initial values and parameters. Linear differential equations. Global properties of solutions. Stability. Periodic and bounded solutions. Differential inequalities and a priori estimates of solutions. Differential equations with singularities in time and in phase variables. Impulsive differential equations. Functional differential equations.
|
Learning activities and teaching methods
|
Work with Text (with Book, Textbook)
|
Learning outcomes
|
To master essential tools of the theory of differential euquations.
Comprehension Demonstrate a good orientation ín the theory of differential equations.
|
Prerequisites
|
Master degree in mathematics.
|
Assessment methods and criteria
|
Oral exam
Oral exam. To master essential tools of the theory of differential euquations.
|
Recommended literature
|
-
Aktuální odborné články v mezinárodních matematických časopisech.
-
Andres, J., Gorniewicz, L. (2003). Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht.
-
I.T. Kiguradze. (1975). Some Singular Boundary Value Problems for Ordinary Differential Equations. Izd. Tbilis. Univ. , Tbilisi.
-
J. Kalas, M. Ráb. (1995). Obyčejné diferenciální rovnice. Brno.
-
J.H. Hubbart, B.H. West. Differential Equations: A Dynamical Systems Approach I, II. Springer-Verlag, New York, 1991, 1995.
-
M. Greguš, M. Švec, V. Šeda. (1985). Obyčajné diferenciálne rovnice. Alfa, SNTL.
-
P. Hartman. (1964). Ordinary Differential Equations. John Wiley and Sons, New York.
-
Wirkus, Stephen A., Swift. Randall J. (2015). A course in ordinary differential equations. Boca Raton, Fla. : CRC Press.
|