Lecturer(s)
|
-
Jašková Paulína, Mgr.
-
Fišerová Eva, doc. RNDr. Ph.D.
-
Vencálek Ondřej, doc. Mgr. Ph.D.
|
Course content
|
1. Time series and random process, classification, approaches to model building. 2. Possibilities of General Linear Model in describing a trend. 3. Moving average of a general order. 4. Double exponential smoothing, comparison with simple smoothing. 5. Seasonal models, elaboration. 6. Derivation of the Model of Hidden Periodicities; periodogram and Fisher's test. 7. Box&Jenkins' approach, basic notions. 8. Moving Average process. 9. Autoregressive process. 10. General ARMA process. 11. Identification and verification.
|
Learning activities and teaching methods
|
Lecture, Monologic Lecture(Interpretation, Training), Dialogic Lecture (Discussion, Dialog, Brainstorming)
|
Learning outcomes
|
Applying various methods of time-series analysis, development of statistical models.
Application Applying various methods of time-series analysis, development of statistical models.
|
Prerequisites
|
Basic knowledge of probability theory and mathematical statistics.
|
Assessment methods and criteria
|
Oral exam, Written exam
Credit: active participation in seminars, the student has to turn in individual homework Exam: the student has to present knowledge and understanding of the theory and methods
|
Recommended literature
|
-
D. Gardner a P. E. Tetlock. (2016). Superprognózy: Umění a věda předpovídání budoucnosti. Jan Melvil.
-
H. Kantz, T. Schreiber. (2004). Nonlinear time series analysis. Cambridge University Press.
-
J. Arlt, M. Arltová. (2009). Ekonomické časové řady. Professional Publishing.
-
S. de Kok. (2016). The Future is Uncertain. [online].
-
T. Cipra. (1986). Analýza časových řad s aplikacemi v ekonomii. SNTL, Praha.
|