Course: Nuclear and nuclear-resonance methods for material analysis

» List of faculties » PRF » KEF
Course title Nuclear and nuclear-resonance methods for material analysis
Course code KEF/PGS5J
Organizational form of instruction Lecture
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Mašláň Miroslav, prof. RNDr. CSc.
  • Procházka Vít, doc. Mgr. Ph.D.
  • Novák Petr, Mgr. Ph.D.
Course content
Properties of nuclei, hyperfine interactions, Mössbauer spectroscopy, nuclear resonant scattering, nuclear magnetic resonance, nuclear magnetic resonance imaging, perturbed angular correlation, nuclear orientation, mion spin rotation, neutron activation analysis, neutron scattering, positron annihilation, Positron-electron tomography (PET). Ions beams, Particles detection and radiation. The following specialized blocks are integral parts of the subject: Positron-electron annihilation Positron sources, positron thermalization, annihilation of positrons, positron lifetime measurement, angular correlations, Doppler broadening, application for metals, semiconductors and polymers, PET. Nuclear resonant scattering Classification of nuclear resonant scattering, theoretical description, interaction of nucleus and photon, nuclear forward scattering, quantum beats, dynamic beats, hybrid beats, speed up effect, Light-house effect, nuclear Bragg scattering, nuclear inelastic scattering, Lipkin summation rules, performing of experiments, monochromatization of the radiation , synchrotron radiation properties.

Learning activities and teaching methods
Laboratory Work
Learning outcomes
Properties of nuclei, hyperfine interactions, Mössbauer spectroscopy, nuclear resonant scattering, nuclear magnetic resonance, nuclear magnetic resonance imaging, perturbed angular correlation, nuclear orientation, mion spin rotation, neutron activation analysis, neutron scattering, positron annihilation, Positron-electron tomography (PET). Ions beams, Particles detection and radiation.

Prerequisites
unspecified

Assessment methods and criteria
Oral exam

exam, presentation, laboratory tasks
Recommended literature
  • G. Schatz, A. Weidinger. (1992). Nuclear condensed mater physics. Wiley.
  • H.R. Verma. (2007). Atomic and Nuclear Analytical Methods. Springer.
  • A. Dupasquier, A.P. Mills, Jr. (eds.). (1995). Positron Spectroscopy of Solids. IOS Press Amsterodam.
  • E. Murad, J. Cashion. (2004). Mössbauer spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer.
  • J.C. Vickerman. (1997). Surface Analysis (The Principal Techniques). John Wiley&Sons.
  • K.S. Krane. (1987). Introductory Nuclear Physics. John Wiley&Sons.
  • M.J. Puska, R.M. Nieminen. (1994). Theory of positrons in solids and solid surfaces. Rev. Mod. Phys. 66, 841 (1994).
  • P.Hautojärvi. (1979). Positrons in Solids, Topics in Current Physics. Springer Verlag.
  • P.J. Schultz, K.G. Lynn. (1988). Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 60, 701 (1988).
  • R. Krause-Rehberg, H.S. Leipner. (1999). Positron Annihilation in Semiconductors - Defect Studies. Springer Berlin.
  • R. Rohlsberger. (2005). Nuclear Condensed Matter Physics with Synchrotron Radiation. Springer.
  • S. Mitra. (1992). Applied Mössbauer spectroscopy. Pergamon Press.
  • Tuomisto F., Makkonen I. (2013). Defect identification in semiconductors with positron annihilation: Experiment and theory. REVIEWS OF MODERN PHYSICS, VOLUME 85, 1-49.
  • V. Procházka. (2014). Neobvyklá Mössbauerova spektroskopie. VUP Olomouc.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester