Předmět: Physical Basis of Nanotechnologies

» Seznam fakult » PRF » KEF
Název předmětu Physical Basis of Nanotechnologies
Kód předmětu KEF/FZNE
Organizační forma výuky Přednáška
Úroveň předmětu Magisterský
Rok studia nespecifikován
Semestr Zimní
Počet ECTS kreditů 3
Vyučovací jazyk Angličtina
Statut předmětu Povinně-volitelný, Volitelný
Způsob výuky Kontaktní
Studijní praxe Nejedná se o pracovní stáž
Doporučené volitelné součásti programu Není
Vyučující
  • Mašláň Miroslav, prof. RNDr. CSc.
  • Ugolotti Juri, Ph.D.
Obsah předmětu
1. Schrödinger equation for a system of electrons and nuclei and its approximations, Bloch theorem, Bloch function, localized and delocalized electrons, localization of electrons with decrease in size of a (nano)material, hole (a quasi-particle with positive charge a positive effective mass), excitons (Mott-Wannier excitons and Frenkel excitons, Saha equation). 2. Quantum nature of the nanoworld (wave function, Schrodinger equation in one dimension, time dependent and independent Schrodinger equation, particle trapped in one dimension, linear combination of solution, expected values and two-particle wave function, reflection and tunneling through potential step, tunneling through potential barrier, particles trapped in two and three dimensions, quantum dots, two-dimensional bands and quantum wires, simple harmonic oscillator, magnetic moments). 3. Quantum properties and dimensionality. 4. Single-electron tunneling, Coulomb blocade, Coulomb staircase, superconductivity and quantum nanostructures. 5. Experimental methods for studying physical properties in the nanoworld. 6. Theoretical simulations of the properties in the nanoworld.

Studijní aktivity a metody výuky
Přednášení
  • Domácí příprava na výuku - 10 hodin za semestr
  • Účast na výuce - 20 hodin za semestr
  • Příprava na zkoušku - 24 hodin za semestr
Výstupy z učení
The aim of the subject is cover the phenomena and properties occurring in the nanoworld from the perspective of physics. The students become familiar with a physical description of the nanoworld and solutions of the equations describing the features in the nanoworld. New properties stemming from restrictions in various dimensions are also discussed in details.
Students define the main ideas and conceptions of the subject, describe the main approaches of the studied topics, recall the theoretical knowledge for solution of model problems.
Předpoklady
nespecifikováno

Hodnoticí metody a kritéria
Ústní zkouška

Knowledge in the scope of the syllabus.
Doporučená literatura
  • Bassasi, F.; Pastori Parravicini, G. (1975). Electronic and Optical Properties of Solids. Pergamon Press.
  • Borisenko, V.E., Ossicini, S. (2004). What is What in the Nanoworld. A Handbook of Nanoscience and Nanotechnology. Wiley-VCh, Verlag GmbH & Co. KGaA, Weinhein.
  • Ferry, D. K., Goodnick, S. M. (1997). Transport in Nanostructures. Cambridge University Press.
  • Israelachvili, J. N. (1985). Intermolecular and Surface Forces. Academic Press, London.
  • Poole Ch.P, Owens F.J. (2003). Introduction to Nanotechnology. John Wiley & Sons, New Jersey.
  • Singleton, J. (2001). Band Theory and Electronic Properties of Solids. Oxford University Press.


Studijní plány, ve kterých se předmět nachází
Fakulta Studijní plán (Verze) Kategorie studijního oboru/specializace Doporučený ročník Doporučený semestr
Fakulta: Přírodovědecká fakulta Studijní plán (Verze): Aplikovaná fyzika (2019) Kategorie: Fyzikální obory - Doporučený ročník:-, Doporučený semestr: Zimní
Fakulta: Přírodovědecká fakulta Studijní plán (Verze): Nanotechnologie (2019) Kategorie: Speciální a interdisciplinární obory 1 Doporučený ročník:1, Doporučený semestr: Zimní