Lecturer(s)
|
-
Emanovský Petr, doc. RNDr. Ph.D.
|
Course content
|
1. Estimates of roots of algebraical equations, separation of roots. 2. Solving nonlinear equations, basic methods. 3. Regula falsi method, Newton method, combined Newton method. 4. Finite methods for solving systems of linear equations. 5. Solving systems of two nonlinear equations. 6. Determinant and inverse matrix. 7. Iterative methods for solving systems of linear equations. Gauss-Seidel method.
|
Learning activities and teaching methods
|
Monologic Lecture(Interpretation, Training), Demonstration, Projection (static, dynamic)
|
Learning outcomes
|
To show a list of basic numerical methods using in the algebra field. To learn working with a software suitable for the aplications.
Deepen knowledges of solving equations and their systems in the (linear) algebra field.
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Seminar Work
Colloquium: the student has to understand the subject and has to be able to use his knowledge for solving practical problems.
|
Recommended literature
|
-
Buchanan, J. I., Turner, P. R. (1992). Numerical methods and analysis. New York.
-
J. Kopáček. (2005). Matematická analýza pro fyziky I. Matfyzpress, Praha.
-
Jarník J., Šisler M. (1969). Jak řešit rovnice a jejich soustavy. Polytechnická knižnice, 18. svazek Praha.
-
M. Dont. (1990). Numerické metody - cvičení. ČVUT Praha.
-
Nekvida M., Šrubař J., Vild J. (1976). Úvod do numerické matematiky. SNTL Praha.
-
S. Míka. (1985). Numerické metody algebry. SNTL.
-
Segeth, K. (1998). Numerický software I. Karolinum, Praha.
-
Vitásek, E. (1987). Numerické metody. SNTL, Praha.
|